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PREFACE 

"Electromagnetic theory is a peculiar subject. The peculiarity resides 
not so much in the stratification - superposed layers of electrostatics, 
magnetostatics, steady currents and time-varying fields - as in the 
failure that has attended all attempts to weld these layers into a 
logical whole . The lowest layer, electrostatics, defines certain 

concepts, such as z, 5, 4 ,  in a way that is generally satisfactory only 
for the static case. Yet the attempt is made to force these specialised 
definitions into the higher strata, with ad hoc modifications when 
necessary. The student, in looking through his text books on 
electromagnetics, can find general definitions only with difficulty, if 
at all; and even the most advanced treatises fail to present a 
rigorously logical development of the subject". 

1 
So wrote Moon and Spencer some 30 years ago; and their criticism continues 
to be pertinent today. 

More recently, a senior physicist of the National Bureau of standards2 has 
expressed his concern in similar terms: 

"A logically consistent set of definitions of the electromagnetic field 
quantities is extremely difficult to find in the literature. Most text 
books either evade the problem or present definitions that are applicable 
only to special cases". 

On a related issue R.W.P. King writes 
3 

"--- where the purpose is to arrive at solutions of general or special 
problems and not follow an interesting historical development, it is best 
to learn how to proceed from the most general equations. Thus it is 
interesting, but immaterial for the man interested in learning to solve 
electrodynamical problems, to know by what winding and devious paths, by 
what bold leaps the Maxwell-Lorentz equations were finally formulated. 
If he nevertheless insists on seeing them 'derived' from other less 
general formulas such as Coulomb's law and Ampere's laws, he must content 
himself with the statement that this has never been done". 

1. P. Moon and D.E. Spencer, "A Postulational Approach to 
~lectromagnetism", Jour. Franklin Inst. 259, p. 293 (1955). 

2. Chester H. Page, "Definitions of Electromagnetic Field Quantities", 
Am. J. Phys. 42, p. 490 (1974). 

3. R.W.P. King, "Fundamentals of Electromagnetic Theory", p. 107, 2nd ed., 
Dover, New York (1963). 

See also P. Duhem, "The Aim and Structure of Physical Theory", p. 200ff, 
tr. P. Wiener, Princeton University Press, New Jersey (1954). 

iii 



iv FIELD ANALYSIS AND POTENTIAL THEORY

Like many authors of advanced texts, King opts for a treatment which
postulates Maxwell's equations, ab initio, and proceeds therefrom. However,
this approach is not entirely satisfactory. The field vectors are not defined
uniquely by Maxwell's equations and a rigorous development along conventional
lines demands a distressing proliferation of postulates of one form or another
(See Sec. 7.9).

One is therefore led to enquire whether an alternative treatment may not be
available which admits of unequivocal definitions of the electromagnetic field
quantities, which bypasses the unjustifiable extrapolations of the inductive
method, and which demands fewer postulates than King's approach. Such a
development does, in fact, exist and was presented as early as 1897 by

Levi-Civita, who subsequently wrote
4

"We can find the essentials of Maxwell's theory even while starting from
the classical laws. It is sufficient to complete them by the hypothesis
that the actions at a distance are propagated with a finite velocity".

In other words, if # and A represent appropriately-retarded forms of the
scalar and vector potentials conventionally associated with time-invariant

distributions of charge and current, and if E and B are defined by

E grad A curl

we can deduce the dynamical form of Maxwell's equations for a vacuum (in
Gaussian units). The ancillary relationship

div J at

follows immediately from the postulate of the conservation of source strength
or from the discrete physical model.

Now this approach is quite different from those discussed previously. It
proposes to derive Maxwell's equations by mathematical manipulation of the
space and time derivatives of potential functions defined in terms of scalar
and vector source densities. Since such analysis, qua analysis, does not
require that the source densities be based upon an electrical model, but only
that they satisfy the equation of continuity, the proposed procedure transfers
Maxwell's equations from the realm of physics to that of pure mathematics - to
what may be called a branch of retarded potential theory.

In these circumstances the physics of electromagnetic theory is introduced
through the constitutive relationships and the Lorentz force formula. The
fact that these describe the interactions of charge complexes by expressions
which involve the symbols of potential theory in no way requires that such

symbols be necessarily given a physical interpretation.

4. Cited by A. O'Rahilly, "Electromagnetic Theory", p. 190, Dover, New York
(1965).
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This division of electromagnetics into pure and applied aspects brings with it
a considerable simplification of fundamental principles. - -

The vector fields E and 1 are no longer defined by force effects on charge and

current elements (with all the attendant difficulties posed by material media)

but as analytical derivatives of the point functions # and A.

Div I - 0, not because 'lines of 1 are always closed' (which is hardly ever

true), but because i - curl A and div curl Z 0.

Similarly, div D - 4r0, neither by postulate nor by a misapplication of

Coulomb's law, but because the equation div E = 4w (p - div F) follows from

the expression for E in terms of * and A, irrespective of the relationship

between P and E.

Again, the analytical transformations which allow B and H to be expressed as
the derivatives of either scalar or vector potential functions constitute the
true basis of the 'pole' and 'whirl' models of magnetic material.

Finally, the displacement current term in Maxwell's generalisation of Ampire's
work law in vacuo appears not as a postulate (to which arguments involving
extrapolation from closed to open circuits ultimately reduce) but as an

analytical consequence of the expansion of curl B.

All of these matters are the province of potential theory; their only contact
with the physical world lies in the identification of the mathematical source

density functions such as p, 3, P and R with those deriving from the physical
model when it is required, as an exercise in applied mathematics, to calculate
the interaction between charge complexes by making use of the Lorentz formula

or the relationships between T and E, F and E (or V) and R and W (or R).

Should experimental evidence ever reveal a failure on the part of the Maxwell-
Lorentz treatment to adequately describe some electrical phenomenon, Maxwell's
equations would in no way be invalidated; their physical relevance, however,
could (among other possibilities) be called into question. Thus, if

Sexperimental correlation were better served by the development of a ballistic
theory (involving a modification of retardation kinematics) the latter theory
would supersede the former in an electromagnetic context; as analytical
developments they would be equally significant.

Our contention is identical with that expressed by Duhem5 at the turn of the
*" century:

"A physical theory is not an explanation. It is a system of mathematical
propositions deduced from a small number of principles which aim to

* represent as simply, as completely and as Lxactly as possible a set of
experimental laws".

5. ibid. p. 19.

I
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"-/7This document is concerned with the systematic development of retarded
potential theory insofar as it is relevant to the study of classical

electromagnetics . To highlight its purely analytical nature overt mention of
electricity and magnetism has been eschewed, although, for obvious reasons,
standard symbolism has been retained.

Since a work of this type finds its most natural expression in terms of
Gaussian units, no apology is offered for their adoption. A knowledge, on the
part of the reader, of only the elements of vector analysis - amounting to
little more than a familiarity with the addition, subtraction and
multiplication of vectors - has been assumed.

R.S. Edgar

6. In dealing with doublet and whirl complexes (equivalent to polarised
dielectrics and magnetised material) considerations are restricted to those
complexes which are at rest in the system of coordinates in which the
various field functions are evaluated.
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NOTATION

The limited nature of available type face has led in part to the adoption of

the following notation:

Vector quantities are represented by a bar over the associated symbol.

Complex quantities bear a tilde superscript while complex conjugates are
starred in addition.

The dot in the scalar product is located at the foot of the component
symbols rather than half-way up.

Unit vectors, other than 1, J, k, carry a circumflex superscript.

The symbol R is used on occasion to represent a region.

AI

4 ---..........
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CHAPTER I

THE DIFFERENTIAL AND INTEGRAL CALCULUS OF VECTORS

1.1 Scalar and Vector Fields

A collection of points, or a point set. is said to be connected if every
pair of points in the set can be joined by a continuous curve composed
wholly of points of the set. Such a point set is said to comprise a
region. Thus a region way be associated with a straight line or a plane
surface, or with a curved line or a curved surface, or with that portion
of space included within a closed surface, but not with a set of discrete
points or non-intersecting enclosures.

A point is an interior point of a given region of space if it is the
centre of a sphere of non-zero radius which contains only points of that
region; if the sphere contains no points of the region then its centre
is exterior to that region. A point is a boundary point of a given
region of space if every sphere of which it is the centre contains points
both of that region and not of that region. The modification of these
definitions to cover regions which comprise surfaces or lines is
straightforward.

A region which is described in such a way that it contains only interior
points is said to be open; if it contains all of its boundary points it
is said to be closed. Thus the equation x 2 + y 2 + z 2 < a2 defines an
open region of space which is the interior of a sphere of radius a
centred upon the origin of coordinates, while x 2 + y2 + Z2 1 a 2 defines
the corresponding closed region.

If V(P) Is a scalar point function defined throughout the region R, ie if
for every point P of R there is at least one value of V, then the points
comprising ! together with their associated scalar magnitudes are said to
constitute a scalar field within R. When there is only one value of V
corresponding to each point of R the field is said to be single-valued;
otherwise it is multiple-valued.
The function V(P) is said to be continuous at the point P in R if V(P )

has a definite finite value and if, for every positive number c, no
matter how small, it is possible to find a positive number 5 such that
for all PPo < 6 (where P is a point of R and PP is the distance

between P and P0 ), IV(P) - V(P)I < C. When V(P) is continuous at every

point of R it is said to be continuous in R.

It is sometimes possible to divide a region R into a finite set of
sub-regions such that a scalar point function which is undefined upon the
boundaries of the sub-regions and is discontinuous through them is
nevertheless continuous at the interior points of each sub-region and
exhibits limiting values as any point of a boundary is approached from
one side or another. The point function is then said to be piecewise
continuous in R. I _ _ -
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A surface is said to be equi-scalar or level with respect to V when V has
the same value at all points of the surface. By definition, two level
surfaces corresponding to different scalar values cannot intersect at any
point of a single-valued field.

If !(P) is a vector point function defined throughout the region R. then
the points of R and the associated vector quantities constitute a vector
field in R. This may be single or multiple-valued. The definition of
continuity of F(P) is entirely analogous to that given above for the
scalar field.

Unless stated to the contrary, the scalar and vector fields of the
following pages will be assumed to be single-valued and continuous.

1.2 Directional Derivative of a Scalar Field

Gradient

Let V = V(x,y,z) be a scalar point function having continuous partialBV BV Byhoghug 1ein sae"P n
derivatives L-x-iy and L throughout a region of space R, and let P and
P be two interior points of R whose coordinates are (xo, Y.9 Zo) and

(x0 + Ax, yo + Ay, z° + Az).

Then

V(P)-V(P ) V(x +AX, yo0Ay, z +Az) - V(Xo, Y +Ay, z +Az)

+ V(Xo, YO+Ay' z0 +Az) - V(xop Yo, Zo+Az)

+ V(x o Yo, Zo+AZ) V(Xo, Yo, Z )

whence, by the mean-value theorem,

V(P) - V(P) -AV - + +
o B o

z +Az z +Az z'o 0

where x0 < x' < x0 + Ax; yo < y' < Yo + Ay; z0 < z' < Zo + Az

Let P 0P - As - @As - iAx + jAy + kAz
A

where s is a unit vector directed along P'P.
0

1. Unless stated to the contrary, continuity of the first partial
derivatives will be taken to imply continuity of the function itself.
Similarly, continuity of nth order partial derivatives will imply
continuity of lower order derivatives and of the function.
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The average rate of change of V along P1P is given by
0

V Vcos(sx) + cos(sy) + a cos(sz)
As aWsy

0 0

yo+Ay y Yo

z+Az zo+Az z'

A

where cos(sx). cos(sy) and cos(sz) are the direction cosines of s, ie the
A

cosines of the angles made by s with the positive x, y and z axes.
A

The rate of change of V at P in the direction defined by s is found by
0

taking the limit of the above expression as AseO while the direction
cosines remain constant.

Since the first derivatives of V are continuous about P we obtain
0

Lsim AsV . d _•s,) ý ax' cos(sx) + ap cos(sy) + y-)I, cos(sz)

0 0 0 0

or, in general,

dV aV 3V V V
,- -a cos(sx) +1 o(sy)+ -sszax -- + cos( + cos(sz) (1.2-a)

Upon re-writing in the form of a scalar product this becomes

dV (i €os(sx) + j cos(sy) + k cos(sz)). IV + j -+LV-+a0

ds (ia ay as])

is known as the directional derivative of V corresponding to the
ds

direction s. and the vector point function i + L + Vis said to

be the gradient (grad) of the scalar V, so that

3V V Vgrad V + + (1.2-2)

ax ay as

and

dV A
d--a " s.grad V (1.2-3)

- - - ---- ---
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It is now seen that the magnitude of the directional derivative at a
A

point is equal to the scalar component of grad V in the direction of a at
that point, consequently grad V defines both in magnitude and direction
the maximum positive rate of change of V. Further, grad V must be normal
to the surface of constant V through any point, since only in this case

dV
is d- zero in all directions within the surface as required. This leads

to an alternative definition:

A dV
grad V - (1.2-4)

where n is the unit vector normal to the surface of constant V through
the point in question and directed towards larger positive values of V,

dV
and L is the rate of change of V in this direction.

Since this definition in no way involves any coordinate system it follows
that grad V, as expressed in (1.2-2), must be independent of the system
of rectangular axes chosen. An analytical proof of this is given in
Sec. 1.19.

A considerable simplification of expression may be effected by treating

L + Iy + z as a differential vector operator, written as V and

called 'del' or 'nabla', which operates upon a scalar point function in
accordance with the following convention:

V (V L + 3L ) +V + 1 LV± + K H (1.2-5)

Then

grad V - VV ; A

We may carry the notation further by treating V as a formal vector in the
A

scalar product s.V, in which case2

(8.V) - (I cos(sx) + 1 cos(sy) + I cos(sz)). L + 3 +

- cos(sx) L+ co,{,y)l+ cos(sz) a (1.2-6)

2. More generally, if F is a vector point function, then

(F.V) - F !- + FL + Fz••

x 3x y.ay Z at

a F(f. v) where F-fF
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Then

A~s.a) - osx)V V 3•V(s.V)V - cos(sx) + cos(sy) E + cos(sz) --ax 3y 3z

whence

-•dV _
(s.V)V - as s.(VV) (1.2-7)

The differential form of (1.2-7) is
A

dV - ds(s.V)V - (ds.V)V (1.2-8)

The finite difference form of this relationship is a series expansion of
which (a.V)V comprises the first term. This may be demonstrated byexpanding V(P)-V(P ) - AV in a Taylor series on the assumption that the
1st, 2nd ............ partial and mixed derivatives of V are continuous.It may be shown that

A av 3V 3V 32V (Ax)2  12; (Ay) 2+iV(AZ2

+ --- ayAy + -AxAz AyAZ +

BXBy axaz Byaz

where the derivatives are evaluated at P
0

This may be put into the form

AV ( V.V)v + ,(Cs. V)2V + -_ (1.2-9)

where

(Cg.V)2 . Lx + AY a+z

(A ax 2 ByXl y-
r.= (AX) 2 a-2 + 2 Z a 2AaxW
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1.3 Directional Derivative of a Vector Field

The directional derivative of the vector point function F in the
A

direction defined by the unit vector s is given at any point by the

associated value of d"
do'

df Lirm Lim( AFx + A JFy + A kF'z
ds AS&--0 As AO \ As

'i _ &im F - +imy + y
- LiJ•.iAFx+ J ,P.+ kAFz)

" As+\" "- A s

where F , F y, F z are rectangular components of F, ie

dF dF dF

T - ! +
do do 4  do do

Then, provided that the first (partial) derivatives of F are continuous
3

at the point in question,

dF A ^A- -•

6a .(7,v) yx + 3(,.v) F y + k(s.V) F

A ~AA
(s.V) Fx + (s.7) j Fy + (s.V) k Fz

it

dF A
-d (e.V)F (1.3-1)

A A

It should be noted that (s.V)F cannot be replaced by s.(VF) since no
meaning has been assigned to the direct operation of V upon a vector.
The differential form of (1.3-1) is

dF- (ds.Y)F (1.3-2)

3.

i. H Dl-. Mare continuous (in which case the scalar components of

have continuous first derivatives).
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More generally, (assuming continuity of the relevant partial derivatives)
it follows from (1.2-9) that

J? - (As.v)p + L (Cs.v) 2F + (1.3-3)S2!

1.4 Differentiability of a Scalar Point Function

Gradient and Directional Derivative of Combined Scalar Fields

The scalar point function V is said to be differentiable at P if, in the0
notation of Sec. 1.2,

ý ý-; (.!AX -(ý&) AY - (- ~At /Ar.O as Ar-oO

0 0 0

where &r2 = Ax2 + Ay2 + Az2 .

Thus, V is differentiable at P when the first partial derivatives of V

are continuous about Po, since in this case we may write

a+ El {j(3 + FI+(!V-) + E] AY + +/v £3~ AZ

where l0,2, E240, E3-0 as Ax, Ay. Az.O.

This, however, is not a necessary condition4

At points where V is differentiable, the directional derivative is given
A

for all a by

dV
S" s.grad V

where grad V is identified with T 1-V + 3 1V + V
ax BY at

When V is not differentiable, grad V is no longer considered to exist (or
is not considered to be a vector) although it may still be possible to

evaluate +1 + M! + a
ax ay az*

4. See H. and B.S. Jeffreys, "Methods of Mathematical Physics", Sec. 5,041,
3rd ed., Cambridge University Press (1956).
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For the case of two point functions, V1 and V2, we have

iL (VI+V 2 ) + J -y (VI+V 2 ) + L (V-+V2)

a vx _v _v _v 2  av2  _ av 2

- ix+ j -- + k + i + j + k z

wherever the partial derivatives are defined.

When V1 and V2 are also differentiable this may be replaced by

grad (V1+V2 ) = grad V1 + grad V2  (1.4-1)

In addition,

grad VIV 2 - V1 grad V2 + V2 grad V1  (1.4-2)

grad (V1 /V2 ) - (I/V 2 ) grad V1 - (V1 /V2
2) grad V2 (V2 * 0) (1.4-3)

ie the gradient operator obeys the usual rules of differentation when
operating upon the sum, product and quotient of scalar point functions.
Corresponding formulae hold for the directional derivatives, eg

d A A

S- (VIV2 ) a V, a . grad V2 + V2 s . grad V1

EXERCISES

"1-1. Derive an expression for the unit normal to the surface
3x2yz+2y 2 -Z2 - 13 at the point (1,2,1)

Ans: i12+111+k4

1-2. Show that the vector ix+jy+kz drawn from the origin of coordinates is
normal to the surface x2+yr+z2 

- constant at the point of intersection.

1-3. Find the directional derivative of the scalar point function

4x 2y+3xz 3+5xyz in the direction i4+j5-k6 at the point (1,2,3)

Ans: 6.50

1-4. Find the angle between the normals to the surfaces x2+3y2+4z - 48 and
2x+3zy+z 2 

- 36 at the point (1,3,5)

Ana: 65° 38'

1-5. Derive an expression for the unit tangent to the curve of intersection
of the surfaces in the previous problem at the point (1,3,5)

Ana: (~114

i~~~r 14 . -
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1-6. Derive an expression for the directional derivative of the vector point

function i4x 2 y+-j3xz 3+"5xyz in the direction of 14+j5-k6 at the point
(1,2,3)

Ans: i84-j162+k135V7 7

1-7. Prove that (F.V)r = F where r = ix+Jy+7kz

1-8. If V - V(u,v,w --- )

and u = u(x,y,z)
v - v(x,y,z)
w - w(x,y.z)

have continuous partial derivatives, prove that

grdV--V 8V •V

grad V - -grad u +j grad v + Lgrad w + ----

(see Sec. 2.4)

1-9. Confirm equation (1.2-9)

1-10. Let V be a scalar point function having continuous partial derivatives
3x 3V 3z throughout a region of space. Prove that the partial

dV I V 3V
derivatives a , i7 are likewise continuous throughout the region.
where x', y', z' refer to another rectangular coordinate system of
random orientation.

Hence show that the continuity of the partial derivatives of V in x, y,
z is sufficient to ensure that

EV + V -aV +V xV+ - + V

1-11. Make use of the relationships which exist between i, J, k and P', V', k'
in two systems of rectangular coordinates (Sec. 1.19), to prove that the
equality of the previous exercise subsists at a point in the presence of
discontinuities of the partial derivatives, provided that V is
differentiable at that point.

1-12. If V - f(x,y,z)

and

f(x,y,.) - x y Z •x~y~z) z (0.0,

(x2-y2+z2) 'Y2 ((I /.)* MO

f(o,o,o) 0 0

show that f-Li- + I + kIV is defined at the origin but grad V is not.

ax ay axshw
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1.5 Scalar and Vector Line Integrals

Let PQ be a continuous curve (which will be designed r) and let ro, rI,
- ~50

r --- r be vectors drawn from an arbitrary external origin to

closely-spaced points on it (Fig. 1.1). The vectors rl - ro, r 2 - r,

-- comprise a set of directed chords which approximate the profile of
the curve. The typical chord is shown in the figure; it is

r i - i- = Ar i and its positive sense is along the curve from P to Q.
A A

If si is a unit vector directed along Ari, then Ar ai & si where

AS- IA . Let the unit tangent to the curve at the end point of ri

be designated ti. Then si approaches ti as As 00.

Fig. 1.1

5. These are known as position vectors since they serve to define the
position of points on PQ relative to the external origin.
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Suppose that V and F are bounded scalar and vector point functions which
are piecewise continuous over PQ (where 'piecewise continuous' includes

,6 7'continuous') . Then provided that PQ is regular , the following limits
exist and serve to define four distinct types of line (or contour)
integral:

(a)

n n

fVIdT - Linm- Vi[Cri - Lin 7 i As f V ds (1.5-1)

EAa-bO+6! rAri* i 0-I As 1 O 1-1

where Vi is the value of V at any point of the element

of arc intercepted by Ar.

When V - 1 the integral defines the length of the curve between P
and Q.

(b)

n n

V dr = Lim V ri - Lim Vi s As, = V t d

Ar As0 i-Or 
(1.5-2)

6. It has been assumed that any discontinuities of V or 7 which may be
present can be accommodated within intervals of arbitrarily small total
length. This applies equally to the line integrals considered below and,
in equivalent form, to the surface and volume integrals of Secs. 1.6 and
1.7.

7. A regular curve consists of a finite number of non-intersecting regular
arcs Joined end to end. A regular arc is a set of points which, for some
orientation of Cartesian axes, can be expressed as y = f(x), z - g(x)
within an interval a 9 x 6 b, where f(x) and g(x) have continuous first
derivatives. It follows that a regular curve has a continuously turning
tangent at interior points of its component arcs; it is said to be
piecewise smooth or piecewise differentiable. The curve may, of course,
comprise only a single arc, in which case the unit vector tangent is
continuous throughout.

It will be supposed, henceforth, that the curves under consideration are
regular. For a detailed treatment the reader should consult O.D. Kellogg,
"Foundations of Potential Theory," pp. 97-100. Frederick Ungar Publishing
Co., n.d., Now York.
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With Ar - iAr + j Ar + Lr this becomesx y z

n

I dr - Lim Z Vi (T Ar +j Ar +k r)i

r Ari-.0i1

Since the limiting value is independent of the mode of
subdivision of the curve PQ during the limiting process, the
above expression uay be replaced by the sum of three individual
limits, as shown below, where the associated n's and i's are

8
unrelated

n n n

V Vd-r Lim V'(VAr)x + Lim (VAr)y + Lim 7'K(VArz
r (Ar )i.O i-l (Ary)÷40 i-1 (Arz)i. i-0

Sf dr+ f V dr +"k f V dr (1.5-3)

r r r

(c)

n n

F.dr - Lim Fi. Ari - Lim LFi As Ftds
r fr• n

Arii 1-I Asi -i -l (1.5-4)

where Fi is the value of F at any point of the element

Sof arc intercepted by Ar• .

8. This applies equally to the line integrals considered below, and to the
surface and volume integrals of Secs. 1.6 and 1.7.
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Further,

n

'd-r - Lim T (F Ar +F Ary+FAr)

r - i
Ari*O t-1

n n n

0= Lim 7 (FxAr)x + Lim 7'(FyAr y) + Lim 7 (F zAr )i
xxi- yyioo n-b- L

(Ar.)i*O i-I (ArY i+ 1-I (Arz)i1+0 i=i

F f dr + / Fdr + F Fdr (1.5-5)

r r r

This integral is known as the tangential line integral of

since the component of F tangential to the curve replaces V in
(a).

(d)

U n
F - Lim F x-r = Lim Fix As i " (Fxt)ds

r d- ni r

Art O i-I As 1O r-1

(1.5-6)
n

Lim 7' {?(FyArz-FzAry)i + I(FzArx-FxArz) + !(FxAry-FyArx)1l

Rn00- T, y z i zx z y x
Ari O i-i

"f (Fydrz-Fzdry) + (Fzdrx-Fdrz) +1 /(Fxdry-Fydr) (1.5-7)

r r r

This is sometimes called the skew line integral of F between P
and Q.
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A line integral is said to be closed if the end points coincide, ie if
the integration is carried out around a closed curve. In this case the

integral sign is replaced by the symbol f as in f f x dr. The positive

r
sense of integration around the curve must, of course, be stipulated when

vector quantities are involved. The tangential line integral of F around

the closed curve r, viz. F T. d, is sometimes referred to as the

r
circulation of F about r.

Although the general treatment of the integral calculus of scalar and
vector fields does not require that definite integrals be evaluated,
specific problems may, on the other hand, demand this. Under these
circumstances it is necessary to reduce such integrals as appear in (a),

X2

(b), (c), (d) above to the form f f(x) dx, or equivalent, so that

xl

integration may proceed in the usual way via the fundamental relation-
ship:

f f(x) dx - *(xZ) - *(xj) where *C(x) - f(x) (1.5-8)
X1

In this respect no difficulty is encountered with the scalar integrals

f V ds and fFt ds so long as V and Ft can be expressed as functions of

s, since this establishes the required form of integral. In general,
however, the procedure is more complicated.

Consider, for example, the evaluation of the tangential line integral of
F along a curve lying wholly in the xy plane where F - F(x,y). In this
case (1.5-5) becomes

fP.d - f Fxdrx + f Fdr -f+ 1dr.+ff2..ydry .S-S(a))

r r r r f

Since the equation of the curve relates x a~.d y at each point, it is
possible to express (1.5-5(a)) as

f'.d "r fgl(x)drx + f,(y)dry
r r r
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But jArxI - [Axj and jAryj - fAYy, hence

F.dF f gl(x)dx + j g 2 (y)dy (1.5-5(b))

xP yp

where the order of the limits of integration now carries that degree of
responsibility for the sign of the result which was previously borne by
the intrinsic sign of Arx and ary.

(1.5-5(b)) is the form of integral required for evaluation since each
integrand is a function of the integration variable alone.

For the case of a curve in space the Cartesian coordinates of each point
are sometimes expressed as individual functions of some independent
variable, say t. (Parametric representation). The appropriate form of
(1.5-5) may then be shown to be

f.d4 f Fx dt + j F dt + f F d- dt (1.5-5(c))

r tp tp tp

so long as the derivatives are finite throughout the interval.

Since the rectangular components of F are assumed to be functions of
(x,y,z), they may be expressed over r as functions of t. The derivatives
of x, y and z with respect to t are likewise functions of t so that
(1.5-5(c)) may be written as

f F.d -f hl(t)dt + h 2 (t)dt + h3(t)dt

VO N tp tp tp

which is the form required for evaluation.
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1.6 Scalar and Vector Surface Integrals

Let S be a two-sided regular surface, either open or closed9, and let its
faces be divided into a system of elements designated AS1 ,
AS2 -- ASi -- AS n. The positive sense of the vector normal at any

point of the surface is taken to correspond to notion through the surface
from the negative to the positive side. For a closed surface the outer
side is conventionally chosen as positive; for an unclosed surface the
choice is arbitrary.

We associate with the typical surface element ASi the vector

-is- T (aSx)i + R(aSy)i + I(ASZ)i where (ASx)is (aSy)i and (ASz)i are

the projected areas of ASi on the ., 3 and 1 coordinate planes resp. (ie

on the yz, xz and xy planes). The sign of the projected area is to be
taken as positive if the vector normal at each point of ASi makes an

angle of less than 90* with the corresponding positive coordinate axis,
and negative if the angle is greater than 90*. When there is a change of
sign across an element the surface should be re-divided to remove the
anomaly.

We now assign to ASi the additional significance of laSi. and define n A

A 10
by means of CS, " n- Si 0"

Then if V and F are bounded scalar and vector point functions which are
piecewise continuous upon S, the following definitions apply.

(a)
n n

VId'9I - Lim ViAS1i - Lim V iSi - f V dS (1.6-1)

ASt.O i-1 ASi*O i-1

9. A surface S is regular if it can be divided into a finite number of
non-intersecting regular parts or 'faces', each of which can be
represented, for some orientation of Cartesian axes, by z - f(x,y), where
x,y are the points of a region of the xy coordinate plane bounded by a
closed regular curve and f(x,y) has continuous first derivatives throughout
the region. As a consequence, the unit vector normal to the surface is
continuous at interior points of all faces but is not necessarily
continuous upon their boundaries. (The latter may be shown to comprise
regular curves.) S is then said to be piecewise smooth or piecewise
differentiable. A surface is closed if each component arc of the regular
curve which bounds any face ('edge' of a face) is common to two faces.
Otherwise the surface is open. (See Kellogg, pp 105-12).

All surfaces to be treated subsequently will be assumed to be regular.

10. It will be evident from Ex. 1-24, p. 24 that as AS shrinks about an
A i

interior point of the element, so ni approaches the unit normal to the

surface at that point.
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where Vi is the value of V at any point of ASiV

When V = 1 the integral defines the scalar area of the surface S.

(b)

nf VCS =LiZ V i S
S

(1.6-2)

n

- Lim V iASi - V ndS

AS-O I-1I

n

nLim Vi(iAS +JASy+ -Sz)i

I+,,- i-i

n n n

Lim !(VAS ) + Lim !(VAS) + Lim k(VAS Z)

n Yn4m 
Z_ n,-

(ASx)i+0 1-1 (ASy)i4O i-I (AS Z)i O i-I

(1.6-3)

if V ÷dS + VdS + f V dS

S S dS

When V = I the integral defines the vector area of the surface S.

(c)

n n

T.dS - Lim f iA I - Lim F 1 .i ASi - F dS (1.6-4)
En- n4+ = j

SAS1i+•i-1 s- 0o -.1

where F is the value of F at any point of ASi.
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Further,

n

F.dS Lin (FxASx+FyAS_+FzAS

i

n n n

n-Lim ' (FxASx)i + Li. (FyASy)i + Lim '(F zASzdi
U-1M Z ~ UND Z z

(as X)i 0 1 1(ASy )1O i-I (as)i-*O 1-1

(1.6-5)

Fx FdS+ f y z F z

S S S

This integral is known as the normal surface integral of F over
S, since the normal component of F, viz. Fn, replaces V in the

scalar surface integral (a).

(d)

n

f x dS - Lim Z Fix CSn

AS 1 +0 -1

(1.6-6)

n

Lim Fx f i - (Fxn) dS

AS t÷O i-1

n
Lim Z x (-iAS+ ASy+-AkSz),

(1.6-7)

S (FydSz-FzdS) + " [(F dS -F dS + (F dSy-FydS)
s zz S z x z 1 x
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(e)

n

fs dS = Lirm -'FAS-

S ASiO i-1

(1.6-8)

n

Lim T, (iFx+jFy+kFz) ASi
n.,~

AS •0 i-1

ii a an n n

Lim i(F xAS)i + Limi I(F yAS) i+ Lim ii (FzAS)i

AS O i- 1 +0 i-1 ASia0 1=1

(1.6-9)

i FxdS + f FydS +k FzdS

S S S

When integration is carried out over a closed surface, the integral

symbol is vrittenf as in f V dS.

S S

Like their line integral counterparts, surface integrals such as (1.6-3).
(1.6-5) and (1.6-7) are shorthand expressions for the limits of sums.
For the purposes of evaluation these expressions are replaced by iterated
integrals. Thus, (1.6-5) becomes

ff Fxdydz + ff Fydzdx + 11 Fzdxdy (1.6-5(a))

where the appropriate limits of integration are to be supplied, and where
Fx, F and F are expressed in terms of tho integration variables alone,Sy z
through the agency of the equation of the surface.

The iterated integrals are evaluated by the standard procedure of
successive integration.

Before passing to the next subject it should be noted that the scalar
area S of a surface has been defined by

n

S Lim iJ.jS l- f IdSI
i-I
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while the vector area of the surface has been defined by

n

ASi0 E

± i-i

In general. fd'9 ,IfdSI; only in the case of a plane surface can we

write S. - s

1.7 Scalar and Vector Volume Integrals

Let the space within a closed regular surface (regular region) be divided
into volume elements designated Ar 1 , AT2 --- ATi --- ATn, and let these

symbols also represent the volume of the elements. Then if V and I are
bounded scalar and vector point functions which are piecewise continuous
throughout the region, the associated scalar and vector volume integrals
are given by

(a)

n

VdT - Lim VZ I AT n (1.7-1)

SAT,*O0-

where VI is the value of V at any point of ATI.

(b)

ficT - Lim Y3F±AT i (1.7-2)n E

ATr,.O i-I

n n n

Lim Z i(F.AT)i + Li Z 3(F yAT) i + Li ! k(F AT) I
ATI4O i-1 AI t-1 At Oi-1

(1.7-3)

T F 1 dT+ Fyd,+k F dT

where FI is the value of F at any point of ATI.

Similar remarks apply to the integral form of (1.7-3) as apply to the
surface Integrals of the previous section.

It should be noted in connection with both surface and volume integrals
that the shape of the elementary units (supposed regular) is immaterial
so long as all dimensions decrease uniformly during the limiting process.
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EXERCISES

1-13. If F is a function of the scalar variable w prove that

y dF dF
dw dv

where F - I.
A

Use this result to show that if the unit vector a is a function of time
A

daA
(t) then dt is perpendicular to a.

1-14. Let F be a function of time and let V -Vo/ (-I where V° and y are

constants.
d dV G.F

If L (VF) - G prove that dV
dt ~ dt YT

1-15. If r is the position vector of a particle relative to some fixed point,
- dr dv d2r

its velocity is given by v - ! and its acceleration by dv -d-,

Prove that
A

(a) v - vt

where v - L and t is the unit tangent to the path. (s is dis-
dt

tance along the path measured from some point in it.)

dv A dv A v 2

d t - dt wt 0
A

where p is the radius of curvature of the path and n is the
unit normal to the path directed towards the centre of
curvature.

1-16. In the above problem prove that the rate at which the position vector
sweeps out (vector) area is given by

ds d~r

Derive an expression for d 2 and hence snow that when the accelerationdt2

of a particle is directed towards a fixed point the position vector
from that point moves in a plane and -sweeps out area at a constant
rate.

Ans: -. !j)
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1-17. If a particle moves under the influence of gravity and forces of
constraint which are everywhere normal to the path, show that

i jv2 + m g h - constant

where m - mass of particle

g - acceleration due to gravity

b - height of particle above some datum level

(Hint: Write down the equation of motion, multiply each side scalarly

by 2; and integrate the resulting equation with respect to time.]

1-18. Let r be the distance between two moving points. Show that -r
_dt r

where vr is the radial component of the relative velocity v of the

points. Show also that

"d a + - (v 2 
- V2)

where a is the radial component of the relative acceleration i of ther

points.

1-19. Use (1.5-5) to evaluate f I.dr

where P - fl(x) + J f 2 (Y) + I f 3 (z)

and fl, f 2 and f 3 are well-behaved11 functions.

Hence show that F.dr is zero for all closed paths.

0 KQ yQ zQ

MAs: f .r I - Lz(x)] + [I2(y)] + 10(01
p X p yp Z p

where *I(x) - fl(x); *j(Y) - f 2 (Y); *3(z) * f 3 (z)

11. Ie the functions and their derivatives have the requisite degree of
continuity for the problem in hand.
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1-20. In the definitions of the scalar and vector line integrals given in

Sec. 1.5, Vi and Ti were taken to be the values of V and F at any point

of the arc of the integration curve intercepted by the rectilinear

element •t " Show that if V and F are defined beyond the curve and are

continuous in its neighbourhood, then the same values obtain for the

line integrals if Vi and F are taken to be the values of V and F at

any point of Ai"

1-21. Given that

(a) r is the position vector relative to some fixed point

(b) r - j-rj

(c) f(r) is a single-valued, well-behaved function of r

(d) a is a constant vector point function

show that

f'r (a.r)r (r.dr) + f(r) (o.r) dr + f(r)r (iad4) - dF
r

where P is some single-valued vector point function.

(In this case the left-hand expression is said to be an exact
differential.)

Hence prove that for any closed curve

f (f'(r) (a.r)r(r.dr)+f(r)(i.-r)d r+f(r)r(a. d) -

Ans: - f(r) (a.r)r

1-22. Derive equation (1.5-5c) from first principles.

1-23. Show that the length of a curve in space between points whose abscissae
are x 1 and x 2 may be expressed as

fx f, + (•) + (dx)2 dx

provided that at no point of the interval does the tangent to the curve
lie in the yz plane.



24 FIELD ANALYSIS AND POTENTIAL THEORY

If x, y and z are expressed in terms of a parameter t show that the
equivalent integral becomes

ti Ldt) + t dtJ ý' dt
ti

so long as the derivatives are finite throughout the interval.

1-24. If a plane surface is randomly orientated with respect to rectangular
axes, show that

(1) the associated vector area, S iSx + J Sy + kSz, is directed

along the normal to the surface and away from its positive
side.

(2) the modulus of the vector area, Js9, is equal to the scalar
area of the surface (in the usual arithmetical sense).

In the light of these results and on the assumption that a curved
surface may be treated, in the limit of sub-division, as a system of
plane elements (see Ex.1-27. below), demonstrate that although vector
area, and, ultimately, scalar area have been defined primarily in terms
of Cartesian components, the surface integrals of Sec. 1.6 are
nevertheless independent of any system of coordinates.

1-25. Show that for a non-plane surface

I f alI fIasi
S S

1-26. Prove that fdS O 0

S

1-27. Let the vertices of a small plane triangle of vector area JS' lie in a
spherical surface. Three planes, each containing one side of the
triangle, cut the spherical surface in a cu-vilinear triangle whose

vector area is S. Use the result of Ex.1-26. to show that

IA_'-k7SI/IC1'.0 as the dimensions of the triangle approach zero.

Suppose now that an open curved surface S is approximated by a
polyhedral surface composed of contiguous triangles whose vertices lie
in S, the outer edge of the polyhedral ,surface approximating the
contour of S.
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Then if F is a vector point function, continuous on and about S, show
that

n

f .d~s Lim 7 i' FaS'
J ~n-•L

tiS'0 i-i

where F is the value of F at any point of the triangle AS'.

1-28. In a homogeneous liquid at rest the pressure p is related to the height
h above some datum level by the equation

p + pgh - const

where p - density of liquid

g - acceleration due to gravity

The pressure at any point acts equally in all directions.

Prove that the upthrust on a body of any shape, when completely
immersed in the liquid, is equal to the weight of the liquid displaced.

Extend this to the case where the body projects through the horizontal
plane of demarcation between two homogeneous liquids of different
densities.

1-29. Let the scalar point functions U and V be finite, single valued and
continuous in the region R, and let W be defined in I by

SWp - U dV

where 0 is a fixed point of R and the integration is carried out along
a smooth curve joining 0 and P.

Show from first principles that, so long as U is a function of V, W is
single-valued in R and grad W - U grad V.

1.8 Stokes's Theorem

Curl of a Vector Field

An open two-sided surface defines a boundary curve around which a closed
line integral may be taken. The direction of integration is
conventionally chosen as anti-clockwise in relation to an observer who
sees the positive side of the surface; in other words, the positive
sense of the normal at the surface and positive motion around the closed
curve bear a right-handed screw relationship.
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The closed tangential line integral of a vector point function F taken
around the boundary r of a smooth open surface S may be shown to be equal
to the normal surface integral over S of a related vector point function,

so long as F has continuous first derivatives in a region of space
containing S. This may be demonstrated as follows.

z

Fig. 1.2

In Fig. 1.2 the positive side of the open surface S is chosen arbitrarily
as the aide remote from 0 50 that positive motion around the boundary 1'
corresponds with the direction of the arrows. From (1.5-5) the

tangential line integral of F around r is given by

n nl n

(Ar 1~i• i1I (Ary)i 1 O imI (Ar 5 )i.O i-I

where the suamation is carried out around the entire curve.

We nov proceed to transform the first term of (1.8-1) into a surface
integral over S.

S r

tC
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Let S be cut in the curves ab and cd by two planes drawn normal to the x
axis, a distance Ax apart. The planes cut the projection of r on the xy
coordinate plane, viz Fr, in a' and b', and c' and d'. The contribution
to the first term of (1.8-1) from the elements of r intercepted by the

-A- -4.
planes may be written as (Fx)a (ac)x + (Fx)b (db)x. The orientations of

ac and db relative to the positive direction of the x axis are such as to

make this equal to ((Fx)a - (Fx ) bI Ax, where Ax is intrinsically
positive.

Now let a system of planes normal to the y axis be drawn through a and b
and intermediate points, and let a$6y be the typical surface element so
defined. This will be designated AS. The projection of AS on the xy

(or i) coordinate plane, viz ASz, is positive for the particular

orientation of S adopted in the figure, because the positive normal at AS

makes an angle of less than 900 with k. ASz is numerically equal to the

product of Ax and the projection of a$ on the xy plane. If Ay is the
increment of the y coordinate on passing from B to a then it is clear
that AyAx - -ASZ. By projecting onto the xz plane we may show in a

similar manner that AzAx - +AS , where Az is the increment of z on
y

passing from 8 to a. (In this case the projected element of area will,
in general, be non-rectangular.)

These two relationships continue to hold no matter how S may be distorted
while the boundary remains fixed and the order of lettering from b to a
remains bBaa. Thus if S were so folded as to make Ay positive, then AS2
would be found to be negative because of the associated change of
direction of the normal. The reader should convince himself of the
validity of the contention by means of appropriate diagrams.

From considerations detailed in Sec. 1.2

3F 3F
(F) -(F) " Ay +za a 3

where Ay and Az have the significance ascribed above, and the derivatives
are referred to points in the neighbourhood of aS as dictated by the mean
value theorem.

Then

Z'C'(FX~ (F ~ A AyI + -- x-A

and

(F (S F S F x
(FxAr) ,- {(Fx)a-(Fx)b Ax / - AS-y - ASJ

db
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where the summations are carried out over all elements in the strip abdc.

Suppose now that r is divided entirely into pairs of elements such as ac
and db by appropriately positioned planes drawn normal to the x axis, and
that the strips so formed upon S are themselves divided by transverse
planes as in the case of abdc.

Then

Z(3F 3FF =rXA - -tSz
Fxx y ay

r s

and, as the number of intersecting planes is increased without limit
while the spacing in each direction approaches zero,

0 Z" )F
Li 7 Fxr - Lim aS y as

Ax+O x. TSS-* z i~ ~

Since, in the limit, the partial derivatives are evaluated upon S itself,

this is equivalent to12

Lim (FxArx)i - f -- dSy - a--y-dS) (1.8-2)

(Ar x)+O i-1

equation (1.8-2) remains valid when the projection of r upon one or both
coordinate planes is re-entrant. If, for example, r, is re-entrant, then
some pair of adjacent planes drawn normal to the x axis will cut it in
four, six --- places corresponding to two, three -- pairs of intercepted
elements. However, since the line integral associated with each pair is
equated to the surface integral taken over that portion of the strip
between them (with sign dictated by currency) it is readily seen that the
total line integral continues to be expressed in terms of the projected
areas of S.

The transformation of the remaining terms of (1.8-1) may be effected in a
similar manner. It is found that

n r 3F 8F '

Lim (F Ar) dS - dS (1.8-3)

(Ary)i+O i-l

12. See footnote, p. 50
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and

D p1 3F 9F

Lim (F Ar )i =-Z dSx - -- dS) (1.8-4)
WWz zi S x ax

(ArZ) i-+0 1.1

hence

f[(r"' - +z ) dS +ýj'- 3F ') dS +-- dS

This may be written as

i F.dr - (curl F).dS (1.8-5)

r s

where

(1.8-5) is known as Stokes's theorem.
1 3

By treating V as a formal vector in the operation Vx we obtain

x (' +÷J-+k- x (iF +jF ykF)

CFzy •y F•_x 'Fzý+ i C FZ

or

V x curlF (1.8-6)

This leads to the determinantal form which serves as a mnemonic:

13. The relationship holds for any regular, open surface since the
integrals continue to exist when S is pieeewise smooth.
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curl T a a a
Kx Ty 9z

F F F
x y z

Alternative forms are14

curl V + - I

- VFXXI + VFyj+ VFzk

When the surface of integration in (1.8-5) is a plane, we may write

F.dr - f (curl F).nfdS - (curl T)dS

fS S

A

where n is constant.

Since the first derivatives of F are supposed to be continuous, (curl n)

will be continuous over S. It then follows from the mean-value theorem
(law of the mean) for integrals that

F F.d-r - ((curl F))p, S

where P' is some point of the surface and S is its scalar area.

14. We have also

curlF Vx x + Vy xT-+ Vz x-

This form of expression carries over into general curvilinear coordinates and
orthogonal surface curvilinear coordinates. (See Ex.2-15., p. 143 and
p. 161). Similar remarks apply to the expression for gradient (p. 3) and
divergence (p. 51).
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If, now, the bounding contour shrinks about some point P within it (or
15

upon it) so that all points of this curve approach P uniformly , then
0

Lim 0 0 .d7 - (curl ) n)P ((curl A).n) (1.8-7)
F o o d ~ )n 187

where PP0 is the greatest distance between P0 and any point of the

contour.

It follows that the circulation of F per unit plane area at a point is

equal to the scalar component of curl F at that point in the direction of
the positive normal to the plane; it consequently obeys the cosine law.
It further follows that if the plane of integration is so orientated as
to maximise the line integral per unit area positively, then this is the
magnitude of curl Y, and the direction of curl I is the direction of the

corresponding normal. It is, therefore, possible to express curl f
(defined primarily as in (1.8-5)) in a form which is independent of any
coordinate system, hence the rectangular Cartesian form must be invariant
with respect to choice of rectangular axes. (See Sec. 1.19).

1.9 Alternative Approach to Stokes's Theorem

We will first derive an expression for the circulation of F around a
small, not necessarily plane, closed curve.

The curve r is shown in Fig. 1.3, the positive sense of integration
around it being indicated by the arrows.

P is a point in its vicinity and r is the position vector of any point

of the curve relative to P . The closed curve r' and r" are the
0

projections of r on the xy and xz planes respectively, and P O and P 0
0 0

are the corresponding projections of P .

The required expression for the line integral is given by (1.8-1). The
first term of this may be transformed as follows.

As in the analysis of Sec. 1.8, let the simple surface S which spans r be
cut in ab and cd by two planes set normal to the x axis at a distance Ax
apart, and let the projections of ab and cd on the xy and xz coordinate
planes be alb', c'd' and a"b", c"d" respectively. The contribution of
the intercepts ac and db to the first term of (1.8-1) is again taken as
((F) - (F) X x

a b

15. The shape which the contour assumes during the limiting process is
imaterial so long as it comprises a simple closed curve, ie one which does
not cut itself.

______________
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z

ar

C" pe

0 Y

xA

Fig. 1. 3

On substituting F xf or V and for Cs in (1.2-9), we obtain the value of

F xat a point whose position vector is 7 relative to P., in terms of F
and Its various derivatives (supposed continuoua) at P.

F - (F x P 0+ ((i;. x)F1)0 + -

- (F BF+x(x + ry(! /aý + -

x x(3' ý)P0 P0
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hence

/3F(3F\
(Fx a-(Fxb - {(rx)a-(rx)b \a-xp + Y(ry)a-(r ( x--) p

0 0

/3F \
+ (rz)a-(rz)b) +-- 4-

0

where the rectangular components of r may be positive or negative
depending upon the position of a and b relative to Pc"

It follows that

(3F X /a F
(F) -(F) + (P'Q'-P'Q')

x a- x b o o \- '-p + (-a'Q'-Q'b') y)P
0 0

+ (+""--_b)

wherea P''aP 0

where P' a'Q' etc represent positive length measures, so that

(3F\ b 3Fx\
f(F Ax - - ) a"b"Ax - a'b'Ax + ---(x a-(Fx)b}x (3-zp \ •;;y-X)p

0 0

If now we suppose that F is divided entirely into pairs of elements such
as ac and db by appropriately positioned planes and that the number of
these planes increases without limit while their spacing everywhere
approaches zero, then

Li Lim a"b"Ax -- Lim atb'x 4--
i. (FpAr) - P AXrO \3y/P Ax*O

(Arx)i*O i-1 0 S S

where T implies that the summation is carried out for all strips into
S

which S is divided.
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But Lin Z a"b"Ax, which is essentially positive, is equal to the
Ax1-O S

magnitude of the projected area of S on the xz coordinate plane1 6 .
Further, the projected area is itself positive as defined by the
direction of integration around r. Hence this limit may be replaced by
S . Similarly, the remaining limit may be replaced by S . Thesey z
substitutions continue to be valid no matter how the surface may be
folded so long as the periphery remains fixed. Since, in addition, the
above equation is unaffected by possible re-entrance of r' or r*', as
discussed previously, we have in all cases

n /BF\ (S IF
Lim (FxAr,)i 3 z- p - y +-

n1b" SP y P~* Sz+-(Ar X )i O i .0 o- 0o

By similar constructions the second and third terms of (1.8-1) may be
shown to be

Lin 7 (Fyary)i -S +
(nry)iO iW1 0 0

and

n 
FLim 7 (FCAr)i -) Sy +-

(F F F

(Arz)i÷O 1-I0 0

whence

""F F' F F
Ty-! T- P) sxy z x2.) y T% Fy,

The remaining terms of the expansion comprise second and higher order

derivatives multiplied by factors of the order of r 3 and higher. On
writing these as y we obtain

16. See footnote, p. 50
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= a~ -F +3 (F\ / 3F ('3F 3FYXd + + - (1.9-

r o

where S Sx + JSy + kSz

Since [ involves only the second power of r it is seen that the
relative importance of the terms comprising y decreases as the dimensions
of the contour are reduced.

In the case of a plane contour of fixed orientation which shrinks about
P in such a way that PP +0, where PP is the greatest distance between

P and any point of the curve, (1.9-1) becomes

Lim 11- r /F F 3F \( 3F\)
-. o F.dr - "" - 5Z / a - n

r0

(1.9-2)

where S is the scalar surface area within the contour and n is the unit
positive normal to the surface.

This equation points to the existence of a vector which we call curl T
and which is defined operationally in terms of the maximum circulation of

Fper unit plane area at a point, as discussed in the previous section.
Its common Cartesian form in (1.9-2) and (1.9-1) allows us to re-write
(1.9-1) as

F.d• - (curli)p §+ y (1.9-3)

r

Alternatively, we may arrive at (1.9-3) directly from (1.9-1) by defining

curl F primarily in terms of the Cartesian expression.

It remains to be shown that for contours of any size and shape (1.9-3)
may be written without a remainder if the right-hand side is expressed as
a surface integral.

To this end let the surface spanning the contour be divided into n
elements, where the typical element is ASi and its bounding curve is r£
(Fig. 1.4).

It will be seen that

S~n
i gf .dr - Fd
ir i- ri

ii

because of the cancellation of the pair of integrals associated with each

common edge of adjacent surface elements. This result holds no matter
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how the surface may be folded so long as all integrations are carried out
right-handedly in relation to the local positive normal. The result is
likewise independent of the degree of sub-division of S.

Fig. 1.4

On applying (1.9-3) to the typical surface element we get

F.dr - (curl i) as i + yi

where Pt is chosen to be some point of AS .

Then

ir Fd ((curl #i.jy}

But

-. 0 as AS.1

(curl 1)p ASi

where it is supposed that all dimensions of AS decrease uniformly, so
that
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n

n0i-I - as nW and S I O

Z (curl F)p.ASi

hence

n

F.dr - Lim (curl T) CS
r A-WE i- ±

or

'.dr - f (curl F).dS

r s

1.10 Application of Stokes's Theorem

We have been concerned as yet only with those surfaces having a single
bounding curve. When, in addition, a surface is bounded internally, the
appropriate form of Stokes's theorem can be developed anew along the
lines indicated in Sec. 1.8 or 1.9. However, it is possible to transform
a multiply bounded surface into one with a single bounding contour by
means of a geometrical construction, and this permits of the direct
application of the theorem developed above.

Fig. 1.5 represents a two-sided surface S with an outer contour r and two

non-intersecting inner contours rF and r 2 . Arbitrary non-intersecting

curves ac and de are drawn upon the surface to join r to r1 and r, to rz.

The single curve abacdefedgca (following the direction of the arrows)
comprises a continuous contour of S. If the positive side of the surface
faces the reader then right-handed integration will follow the sequence
given above. Hence

F.dr - (curl i).jS

S

a. ooa
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rb

Fig. 1.5

It will be seen that those portions of the line integral relating to ac
and da cancel in lairs because F has a unique value at each point of the
curves and integration is carried out in both senses along them. There
remain the integrals around r1 and r2. The above equation is therefore
equivalent to

f F.dr +5  F.dr + F.dr - f cr )d
r rs

or, in general,

e

r Shi h

It is evident that the positive sense of integration around the outer
contour is oppositely directed to that around the inner contours. This
should be borne in mind when evaluating the above integrals.

The reader may prefer to arrive at the above result by dividing S into

discrete parts by the addition of one or more curves such as ac in
Fig. 1.5.
It is readily shown that the normal integral of curl F over any closed

surface is zero if curl F is continuous upon the surface.

cotu toopstloietdt htarudteinrcnor.Ti
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nA
n

n

Fig. 1.6

Consider the closed surface of Fig. 1.6 upon which an arbitrary closed

curve is drawn. The normal surface integral of curl F over the upper

portic of the surface is equal to the line integral of F around the
curve in the direction of the upper set of arrows (for a positive outward

normal). The normal surface integral of F over the lower portion is

equal to the line integral of F around the same curve but in the opposite

sense (lower arrows). Since F has a unique value at each point of the

curve the line integrals (and consequentll the surface integrals) are
equal and opposite, hence

fS (curl F).dS 0

Alternatively, if a small portion of the closed surface were removed, the

normal integral of F over the remainder would be equal to the line

integral of Y round the edge of the hole. The latter clearly approaches
zero as the size of the hole is continuously reduced.

Stokes's theorem has been derived on the assumption that F and its first
derivatives are continuous within the region of integration. If points
of discontinuity are present it becomes necessary to exclude these from
the region by means of additional bounding curves. Stokes's theorem may
then be applied in the form (1.10-1).
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Consider, for example, the two-dimensional17 field defined by

S- (-iy+jx)/(x 2 +y2 ). Within the xy plane which contains the origin of

coordinates, F is seen to be a vector of magnitude 1 where r is distancer'

measured from the origin; it is perpendicular to the position vector
drawn from the origin and is directed right-handedly in relation to the

positive z axis. We find by differentiation that curl F - 0 at all
points of the plane except the origin, where it is undefined.

If a closed curve r is drawn in the plane in such a way that the origin
is not included within it, a direct application of Stokes's theorem shows

that the tangential line integral of F around r is zero. When r embraces
the origin it is necessary to exclude this point from the surface of
integration. Suppose that we do this by drawing about 0 a small circle
of radius 6. Then from (1.10-1) we find that the line integral around r
is equal and opposite to that around the circle. Since r was chosen
arbitrarily it follows that all such curves have the same value of line
integral, and since 6 was chosen arbitrarily in relation to r it follows
that the value of the line integral around the circle must be independent
of 6. The latter is found, by direct computation, to have the value -2w,

so that the line integral of F around r is equal to +2w.

1.11 The Irrotational Vector Field

A vector point function F is said to be irrotational or lamellar within a

region R if the tangential line integral of F between every pair of
18

points is independent of the path taken between them8. This implies

that fr F.dr - 0 for all closed curves within R.

It has been shown that the vanishing of curl F throughout a region is no

guarantee that F.dr - 0 unless r bounds an unbroken surface or one for

which the sum of the line integrals over internal bounding cuves is
19zero

A discussion of this restriction is simplified by the adoption of certain
terms which will now be defined.

A region R is said to be simply connected or acyclic if every closed
curve which can be drawn within it can be continuously contracted to a
point without crossing any boundary of R. Such curves are said to be
reducible. Alternative paths joining two points are said to be

17. A two-dimensional xy field exists throughout a region of space, and
is defined by Fx - fl(x,y), Fy - f 2 (xy), Fz . 0.

18. An irrotational field of force is said to be conservative.

19. Note, however, that most writers equate 'irrotational' with
Izero-curl'.
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reconcilable if they can be continously deformed until one coincides with
the other without passing beyond R. If a region is not simply connected
it is said to be multiply connected or cyclic.

Thus the region bounded by a simple closed surface is simply connected,
and so is that bounded by two such surfaces when one encloses the other
without touching it. But the closed region bounded by two concentric
cylinders fitted with end plates is multiply connected as is that bounded
by a torus and an enclosing sphere, since closed curves embracing the
inner cylinder or the torus cannot be contracted to a point unless some
part of them pass beyond the region.

It is possible to cors-ert a multiply connected region into a simply
connected region by t.e erection of one or more barriers (or 'cuts').
Thus in the case of the concentric cylinders, the barrier abcd shown in
Fig. 1.7a Is sufficient to prevent the setting up of an irreducible curve
and to ensure that all paths between two points are reconcilable. In the
case of the torus and sphere (shown sectionally in Fig. 1.7b) a diaphragm
ef mounted in the central plane serves the same purpose.

a b

I,,/

V/

d c

Fig. 1.7a Fig.1.7b

-.// .
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The relevance of the above concepts to the present discussion lies in the
fact that if a region has been so defined as to exclude discontinuities.
the additional specification that it be simply connected is sufficient to
ensure that the tangential line Integral around any closed curve within
the region may be evaluated by an integration of the curl over a surface

lying entirely within the region. In particular, if F and its first

derivatives are continuous and curl V = 0 at all points of a simply

connected region then ; F.dr - 0 for all closed curves within the region
r

and F is irrotational.

Theorem 1.11-I

If a scalar point function V is single-valued and has continuous first

and second derivatives within a region R. and If F - grad V. then F is

irrotational and curl F - 6 within R.

Proof: Let P and Q be any two points of R and let r be a simple curve
lying wholly within R and passing from P to Q.

Then

n

-f d re V 4- - Lisý(grad V):.iAr

r F hr1 -i
Ar)t- 1-1

Now (grad V)i.,ri - V (Arxi \yI) (Ary)I + (Arz)i

where the derivatives are evaluated at some point of the arc of PQ

intercepted by AlI (or on Ari itself - See Ex.I-20.. p. 23).

But from the considerations of Sec. 1.2

Avi ) (v)(Ar)i +( -)(Ary)i (Ar+--

where a. B. y are points in the neighbourhood of Ar I which approach

At as AtO

Then in virtue of the continuity of the partial derivatives we see
that

(AVI-(grad V) i.AVr)IAVi4.O as Li4O
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hence

n n

Lim (grad V)i'*i = - AV

or 1 -ra 1-1

or f grad V.d6 = V(Q) - V(P) (1.11-1)
r

It follows that the value of the tangential line integral of grad V

between P and Q is independent of the path, hence F is irrotational
within R.

From considerations leading to (1.8-7) if further follows that if, in

addition, the first derivatives of F are continuous, then curl F - 0.
This can be proved alternatively by expanding the expression
curl grad V in Cartesian coordinates.

curl grad V = V9VV

L I + v
ax a+y+ a x aiT a+g

/'32V 32V) -+ <V a2V)+ , (32V 32 )ý y az T -y) ý 3 Z a X -'5Z• M y 3y ax)

whence

curl grad V 0 (1.11-2)

32V a2V
since -a =- - etc.

Theorem 1.11-2

If F is a continuous vector point function which is irrotational

within the region R then F - gred V within R.

Proof: Taking any point 0 of the region as datum we define the scalar
function V such that at any point P of the region

P P

V(P) - f .dr - f Ftds

0 0

where the path of integration lies wholly within the region.

V will be single-valued because ' is irrotational.
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____ - A
Then if Q is a point such that PQ - Ar - s As it follows from the
mean-value theorem that

A

V(Q) - V(P) - AV - (F )pAs - (F.s)pAS

where P' is some point of PQ.

But from (1.11-1)

A

AV - ((grad V)t)p#@As - (grad V.s)p.1 As

where P" is some point of PQ,

hence

(F.s)pw " (grad V.S)p,,

Since this holds independently of the magnitude of As we may let As+O,
whence we find that

A A

(F.s)F " (grad V.s)p

or

A

(F - grad V)p.s - 0

A

But this remains true for all orientations of PQ (ie of s) so that

(F)p - (grad V)p

which is the required result.
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EXERCISES

1-30. Derive (1.10-1) for a surface with a single internal boundary by means
of an analysis similar to that of (a) Sec. 1.8 (b) Sec. 1.9.

1-31. By proceeding from first principles as in Sec. 1.8 derive the form of
Stokes's theorem appropriate to a vector point function which is defined
within a plane region and has no component normal to the plane (planar
field). Hence show that if V - V(x,y) and U - U(x,y) are scalar
functions of x and y which, together with their first derivatives, are
continuous within the region of integration, then

f(V dry U dr (2- (+ 'iýdS~

[This relationship is usually written in the form

f(V dy-U dx)- ff V ( + 30dx dy
r s

and is known as Green's theorem in the plane. (See Ex.1-43, p. 63)]

1-32. Show that F is irrotational if

F - i (6xyz+5z 2 ) + I (3x2z+8y) + I (3x 2 y+1O xz)

and find V such that F - grad V

Ans: V - 3x 2 yz + 4y + 5xz2 + const

1-33. For the two-dimensional or planar field defined by

F - 1 (4xy+6(x+y)-4) + T (2x 2 +6(x+y))

evaluate the line integral 0 F.dr from (0,0) to (3,0) along the x axis,

from (3,0) to (3,27) along x - 3. and from (3,27) to (0,0) along y -x3,
by (a) direct integration (b) application of Stokes's theorem.

Ans: 3174 - 3174 - 0

___
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1-34. For the two-dimensional or planar field defined by

j - j 2 y + T (2x+3y 2 )

evaluate the line integral F.dr from (1,0) to (3,0) along the x axis,

from (3,0) to (3,6) along x = 3, and from (3,6) to (1,0) along a
straight line, by (a) direction integration (b) application of Stokes's
theorem.

Arns: -22

1-35. The equations

x - a sin wt y a cos wt z - bt

where a, b and w are positive constants and t is an independent
variable, represent a left-handed circular helix centred upon the z
axis.

Determine the tangential line integral along the helix of the vector

point function F, as defined in Ex.1-32. above, between the points P and

Q corresponding to t - t and t - t + 2W.

The path comprises one complete turn of the helix. Confirm that F is

irrotational by computing the tangential line integral of F along the
straight line PQ.

Ans: fF.dr - 6Ta3b sin2 wt cos wt+ + sin wtIW 0 0 W (t 0

P

1-36. Show that equation (1.8-5) continues to hold in the presence of an

interior closed curve of discontinuity of F when the tangential

component of F is continuous through this curve, provided that curl F is
continuous at interior points of the two subregions and upon r, and the
surface integral Is understood to represent the limiting value of the
sum of the integrals taken over the subregions as the line of
discontinuity is approached from both sides.

1-37. Given that

(a) V and G are well-behaved vector point functions defined through-
out the region R

(b) for every open surface S of boundary r that can be contracted to
a point without passing beyond R

iF.di - f U.4dS
cr

show that C-curl i throughout R.
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1-38. Let R represent the unbounded region of the xy plane outside a circle
centred upon the origin of coordinates. If

T -. y+Tx in R

x 2 + y 2

show that

F = grad tan-1 x

Prove by direct integration that

J F.dr - 2w or 0

r

according as r embraces the origin or not.

7 is evidently non-irrotational although expressed everywhere in R as
grad V. Discuss this

Ans: (1) Curl F is zero beyond the origin 0 but undefined at 0, and
so admits of the possibility - as confirmed above - that
i F.dr be non-zero when r embraces 0.

r

(2) It follows that F cannot be expressed everwhere in R as

the gradient of a single-valued function; if it could, F
would necessarily be irrotational. It can be expressed as

grad tan- 1 1 everwhere in R only because, corresponding tox
right-handed circulation about 0, tan 1 X can assume

x
continuously increasing values with an increment of 2w per
revolution.

(3) The erection of a radial barrier assures that r cannot
embrace 0 and makes R simply connected. Correspondingly,

tan" .- can be expressed in single-valued form with a
x

discontinuity of 2w across the barrier.

I
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1.12 Flux Through a Closed Surface

The Divergence Theorem

Let S be an open, two-sided surface (Fig. 1.8a) and let F be a bounded
vector point function, piecewise continuous upon S. Then the normal

surface integral of F over S is known as the flux of i through S in the

direction of the positive normal20 at the surface.

n

A

Fig. 1.8a

n

'A

Fig. 1.Sb

20. If a positive currency has been previously established for the
boundary of S, this serves to define the positive side of S (or
vice-versa).
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When a region of space, r, is bounded by a single closed surface S
(Fig. 1.8b), and the outer side of S is chosen as positive in accordance
with the convention mentioned previously, the flux so computed is an

outwardly directed flux, and is commonly referred to as the flux of F out
of the region T.

It will now be shown that if T has continuous first derivatives at

interior points of T and upon its bounding surface (ie if F is

continuously differentiable in the closed region T), then the flux of
out of the region is equal to the volume integral, over T, of a related
scalar point function.

From (1.6-5) the normal surface integral of T over S is given by

n n n

Lim (FxAS)X + Lim (F AS + Lim (FzASz)i

(AS x)i -0- (ASy)i+ i-1 (ASz + 0'-1
(1. 12-1)

The first term of this expression may be transformed into a volume
integral in the following way.

Let S be cut in the surface elements abcd and a'b'c'd' by a rectangular
21

prism drawn parallel to the x axis (Fig. 1.9), and let the sectional
dimensions of the prism be Ay and Az, where Ay and Az are intrinsically
positive. Since the positive normals are directed away from i, it
follows that (AS x)abcd - -AYAz and (AS x)a, bcd' - +AyAz. The

contribution of these elements to the summation may therefore be taken as
((F x) a'-(F x)a} Ayhz.

zc Y YC c
Ay / I" I \

d d

/ b

0 x

Fig. 1.9

21. It will be supposed, in the first instance, that S is non re-entrant,
so that any prism cuts S in only two elements.
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Suppose now that the prism is divided by a system of planes drawn normal
to the x axis and passing through a, a' and intermediate points. Let the
typical volume element so defined be aBy6a'B'y'6'. Then

aF
(Fx)1, - (Fx)C - ax x AX

where Ax - aa' and the derivative is to be taken at some point of an'.

Hence

aF
(F) -(F) 5  - Ax

and

aF
(F xAS x)abcd = (Fx)a,-(Fx)a) AyAz ax AT

alb'c'd'

where AT - AxAyAz, and the summation includes all rectangular volume
elements between the transverse planes drawn through a and a.

If, now, S is divided entirely into pairs of surface elements by
appropriately positioned prisms lying parallel to the x axis, and if
those portions of the prisms intercepted by S are independently divided
by planes drawn normal to the x axis, then

X axFxASx Ar

S

where the volume summation covers all rectangular elements defined by the
intersection of the planes and prisms, and thereby approximates the
volume enclosed by S.

If this mode of subdivision is maintained while the sectional dimensions
of the prisms and the transverse plane spacings are continuously reduced,

the above equation is replaced by 2 2

22. This does not follow directly from the definition of the scalar
volume integral given in Sec. 1.7, where it was supposed that the sum of
all volume elements involved in the limiting process remains constant and
equal to the enclosed volume. In the present instance the enclosed volume
is taken to be the limit of the sum of the rectangular volume elements
constructed during the limiting process, and the scalar integral under

aF

consideration is the limit of the sum of the quantities a XAr. However,

the latter may be shown to be identical with the scalar volume Integral as
defined previously. Similar remarks apply to the derivation of the surface
integrals in Sees. 1.8 and 1.9.
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n

IxiLim (FSx)i " f d¶

(A S x) 1 + 1 =I

This relationship remains valid when the surface is so folded as to be
cut in more than two elements by one or more prisms. In this case the
contributions from adjacent surface elements intercepted by a given prism

3F
are equated to the volume integral of ax between them, so that the

overall form of the equation is unaffected.

Similar considerations show that the remaining terms of (1.12-1) may be

equated to f dr and --a dr, so that
TT

Sx F .d - • dT (1.12-2)
S "T

The volume integrand of this equation is known as the divergence of F.

This is usually abbreviated to div F, whence

S'.dP. - f div 7 dT (i.12-3)
S t'

3x Sy SaZ

By treating V as a formal vector in the operation V. we may write

(iax a? z)j FA-.

"ax'+ 3y + 9z

hence V.J - div Y (1.12-4)

Alternative forms are

div + y . LF+ .!+ 1F

- !V? + !.VF + L.v
x y z

........
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23
(1.12-3) is known as the divergence theorem . The names of Green,
Gauss, and Ostrogradsky are associated with it.

Since the first derivatives of T are supposed to be continuous, div
will be continuous, and by the mean-value theorem for integrals

fF.dS - (div F)p, T

S

where T is the volume of the enclosure and P' is some point of it.

If S now shrinks about a point P within it or upon it, then0

Lim j F.dS - (div F)p (1.12-5)
PP +0

where PP is the greatest distance between P and any point of S.
0 0

(No restriction is placed upon the shape of S during the limiting
process).

Since the left-hand side of (1.12-5) does not involve any specific system

of coordinates, the analytical form of div F given in (1.12-3) must be
invariant with respect to choice of rectangular axes. An independent
proof of this will be found in Sec. 1.19.

1.13 Alternative Approach to the Divergence Theorem

We will first derive an expression for the normal surface integral of F
over a small closed surface S which embraces the point Po.0

Let r be the position vector relative to P of any point of the surface.0

Then from (1.2-9) the value of Fx at this point is given by

F " (F)p + ((L.V)Fx) P+
0 0

so that the first term of (1.12-1) becomes

23. The relationship holds for any closed regular surface S and the
(regular) region T which it bounds.
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n

Lim {(Fx)P +((r iV)Fx)P + --- I (AS) i

(ASx )+0 i1-

n a F{FA/ELim (F ) A rASx,/'F\ (rAS ) +( (r AS

(AS)Omt oax xy xi (z z A

(1.13-1)

Let S be subdivided by prisms drawn parallel to the x axis as in the
previous analysis (Fig. 1.9), and let the values of F to be associated

S

with corresponding pairs of surface elements relate to points having the
same y and z coordinates (such as a and a').

Then only the second term of (1.13-1) is finite because the derivatives,
being referred to Po, are constant, and

n n n

(ASx)i (ryASx), and (rzASx)i cancel in pairs.

i-1 i-I i-1

The second term may be written as

C-3FX)p Li.a (rxAS)
-3 ,P n-o--

0 (AS ) .0 i-1
n

That portion of (rxASx) which derives from the paired surface

i-I
elements shown in Fig. 1.9 is equal to {(rx ) a,-(rx ) a} AyAz, and this is

the volume of the prism intercepted by the transverse planes through a
and a'. It therefore follows from previous considerations that

n

Lim (rAS) -

(ASx )+0 -I1

where T is the volume of the enclosure, so that (1.13-1) reduces to

/a \

0
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Similar constructions lead to corresponding expressions for the remaining
terms of (1.12-1), whence

"f. d• - (•• 3F --+ !Z+ •-F-/ T + V (1.13-2)
( _aF aF -aF 'N

S 0

where y comprises second and higher-order derivatives multiplied by

factors of the order r
4 

and higher. (1.13-2) is the expression which we
set out to obtain.

If, now, S shrinks about P in such a way that all dimensions of T0

approach zero, then

IF-x ( F BFz
Lim - F.d9 - +x-y +z (1.13-3)

0

We see, therefore, that if F is continuous with continuous first

derivatives throughout a region, the 'flux of F per unit volume at a
point' defines a scalar function throughout the region which is
independent of the limiting shapes of volume elements.

This is sometimes taken to be the primary definition of div F.

In this case it remains to be shown that for singly bounded enclosures of
any shape and size

F Y.dl J divfdT
S T

Suppose that T is divided into n volume elements by, say, three sets of

orthogonal planes of equal spacings. Then the sum of the surface

integrals of F associated with all volume elements is equal to the

surface integral of F over S. This follows from the fact that those
portions of the individual surface integrals associated with the common
faces of adjacent elements are counted twice, but with reversed positive
normals, and therefore cancel in the sum.

Hence

n

f F.dS - J .dS

i

where Si is the closed surface associated with the volume element ATV

This equility continues to hold whatever the degree of subdivision.
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From (1.13-3) and (1.13-2)

f F.dS - (div F) AT i +
ASi

where Pi is some point of ATi.

Then

n

F.dS = {(div Ari+T

i=I

But

Yi

(div F) P AT1  0 as Ati

where it is supposed that all dimensions of ATi decrease uniformly, so
that

n

n i-i - 10 as n+- and AT,-+0

Z (div f)Fi ATi

hence

n
F.dS - Lim (div 7) ATi

iS n-0f T

AT 1 0 i-1

or

F'dS /T div F dT

L " S
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1.14 Application of the Divergence Theorem

The divergence theorem has been formulated above for a closed region of
volume integration bounded by a single surface. When more than one
bounding surface is involved, as in Fig. 1.10, the appropriate form of
the theorem may be developed from first principles along the lines

indicated in Sec. 1.12 or 1.13

Fig. 1.10

Alternatively, a geometrical construction similar to that employed in the
corresponding extension of Stokes's theorem may be utilised to derive the
multiply bounded form from that already given.

The general form of the divergence theorem is

fdivd f fT '9.dS+{ i f.dAS +{ idi+- (1.14-1)
T S SI S2

where the surface integration is carried out over all closed surfaces
bounding the region of volume integration T, and the positive sense of

25
the normal is everywhere directed away from T

24. The region need not be simply connected.

25. This definition of the positive sense of the normal is an extension
of that adopted previously, where the region under consideration we,
bounded by a single surface only.



Sec.1.15] THE DIFFERENTIAL AND INTEGRAL CALCULUS OF VECTORS 57

When bounding surfaces are also surfaces of discontinuity of F, (1.14-1)
is understood to apply to the region bounded by closed surfaces which lie
just inside the surfaces of discontinuity.

The divergence theorem has been derived on the assumption that F and its
first derivatives are continuous throughout T. When T contains points of
discontinuity it is necessary that these be excluded from the integration
space by means of closed surfaces, and the the theorem be applied in its
multiply bounded form.

Consider, for example, the computation of the flux of F through a closed
surface S which embraces the origin of coordinates, where

y ~ ix jy +kz

r 3  (x2+y2+z2)3/2

Div F is found to be zero for all non-zero values of r and is undefined
at the origin.

Let the origin be excluded from the integration space by means of a small
sphere of radius 6 centred upon 0. Then (1.14-1) yields

f div F d - T F. ds+ F.dS - 0
T It S i s 6

The flux of F through S is seen to be equal and opposite to that through
S . But the flux through S (which must be independent of 6 since 6 has

been chosen arbitrarily) is readily shown, by direct integration, to have

the value - 4 w. Hence the flux of F through S is equal to 4w.

1.15 The Solenoidal Vector Field

The field defined by a vector point function F is solenoidal (or

circuital) within a region of space if F.dS - 0 for every closed

surface which can be drawn with the region.

The fact that div F may be zero within a region does not ensure that F is
solenoidal within that region, since a surface of integration S may

26embrace a closed surface which bounds the region internally . In this
case it is the sum of the associated surface integrals which is zero
rather than that taken over S alone. The reservation involved is clearly

S26. Note, however, that most writers equate 'solenoidal' with
'zero-divergence'.
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analogous to that encountered in the case of the irrotational vector
field, where it was necessary to stipulate that the region be simply
connected before a zero curl field could be identified as irrotational.
In the present instance we may assert that so long as every closed

surface can be contracted to a point without passing beyond the region
2 7

then the field is solenoidal if div F - 0 at every point of it.

The flux through any open surface in a solenoidal vector field is
dependent only upon its boundary.

In Fig. 1.11 the simple curve r is the comon boundary of the open
surfaces S1 , S2 and S3 .

S2

S3

Fig. 1.11

Since the flux of F out of the region bounded by S1 and S2 is zero, it

follows that the flux through S, is equal, to that through S2 if the

positive sense through each surface is taken to correspond to the

currency around r as defined by the arrows.

27. The region is then said to be aperiphractic.
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If S1 and S2 should cut each other beyond r, then, since the fluxes

through each are equal to that through S3 in the direction shown, they

continue to be equal to one another.

Theorem 1.15-1

If F and its first and second28 derivatives are continuous throughout

the region R, and if V = curl Y, then V is solenoidal and div V - 0
within R.

Proof: It has been shown in Sec. 1.10 that i (curl F).dS = 0 for

every closed surface over which curl F is continuous. It follows thatf V.dS = 0 for every closed surface within R, whence V is solenoidal

within the region. But if V is solenoidal within R and has continuous

first derivatives, then, from (1.12-5), div V - 0 everywhere within R.

We may confirm that div V - 0 by expanding div curl F in rectangular
Cartesians. From (1.8-6) and (1.12-4)

F a FaF a/ F aF'\ (a3F aFNd iv c ur l F T- G -a + -h 7ý + -Z ( 3 -X a y

ie

div curl F . 0 (1.15-1)

since

32F 32 F
z zx"- - -y~ etc.

axay 3y3x

Theorem 1.15-2

If the vector point function V has continuous first derivatives and is

solenoidal throughout the region of space R, then V may be expressed

as curl Y within R.

This will now be demonstrated for a region devoid of bounding
surfaces.

28. In particular, the mixed derivatives should be continuous.
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z

O//

y~zo 0yo

Fig. 1.12

Proof: Let rectangular axes be drawn through the fixed point Cx0pYo

z 0) as in Fig. 1.12. It is evident that

Vx(X.y.z) - Vý (Xxysz) + axy~ x dx

But

x o 9z x

and

x~y z %,yPxyZ avXyZf - dx ndx - --- F 1 d -
ax a y f z

09o 0 ~ ~~ 091

since a~ + o !- at allpoints.ax ay at
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Some consideration will show that

XY av axp',z xyza ,

f T.Zdx -.- fT V ydx and f z ~ dx - -ý- j d
xo~y'z xovy'z Xovy'z xOy'z

hence

xoy'zxyz x,y' z

V (x.y.Z) -y-z ] VV, dz- fpv V dx --5 f V dx

x0yoz 0 Xoy'z K ,YZ

a ~ (-V)y dx - 3z fy Vzdx -o' V xdz}

x~' ,oyz oy,z 0

Further,

x~y'z

V (X.,yz) V j dx

and

xqyqz

V (XPy~z) - - V dx

It is now readily seen that by putting

xqyqz x 9yoz

F x(xYz) -0 P Fy (X'Yz) x f Vzdx- xf V xdz

ox0 y,z KvyqZ0

F~ Z(X.yZ) -- f V ydx

K ,y,z
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We have

Vx(X'Y'Z) G a • ' -y - •z /x vy 'z y z

V xY.Z) __y 3z

Vz (X,y,z) - -_ ,

ie V - curl F, where F has the Cartesian components specified above.

The above analysis is also applicable to a region bounded externally
by a non-re-entrant surface, but complications arise when re-entrant
or multiple bounding surfaces are present because of the
discontinuities that may be introduced into the integration paths

which define the components of F. Nevertheless it can be shown, in

the latter circumstance, that a well-behaved point function F exists,

such that V - curl F throughout the region over which V is defined.

(See p. 344.) It is necessary that V be solenoidal and not merely

divergence-free within any such region, since curl F.dS = 0 when Y

is well-behaved.

There are cases of interest in which V is undefined at some point -

say 0, while div V - 0 eveoywhere beyond 0. The above treatment, or
an equivalent one (See Ex.1-49., p. 65), then permits of the

derivation of a point function F such that V - curl F at all points
except those lying upon some coordinate line or surface containing 0,

over which F is undefined. It may be possible to find an alternative

expression for F29 which is well-behaved everywhere beyond 0, so long

as V is solenoidal in all regions which exclude 0 (as in Ex.1-48.,

p. 64). On the other hand, if V is non-solenoidal in some region

which excludes 0 (as in Ex.1-45., p. 64 and Ex. 2-20, p. 145), then T
can never be well-behaved everywhere beyond 0.

EXERCISES

1-39. Derive (1.14-1) for a region bounded externally by S and internally by
S1, by means of an analysis similar to that of (a) Sec. 1.12 and

(b) Sec. 1.13.

29. The addition of any gradient function to I leaves curl F unaffected.
(Theorem 1.11-1)
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1-40. Given that

(a) V and I are well-behaved scalar and vector point functions
defined throughout the region of space R

(b) for every closed surface S which may be contracted to a point
without passing beyond R

F.dS = f V d,

where I is the space enclosed by S,

show that V = div F throughout R.

1-41. Compute the value of the normal surface integral of W 2x2 + j 3xy + kz
over the closed surface formed by the planes x - 0, x - 1, y 0 0, y - 2,
z - 0, z - 3 by (a) direct integration (b) application of the divergence
theorem.

Ans: 27

1-42. Show that the volume enclosed by a surface is given by i r.dS where r

is the position vector of the typical surface element relative to an
arbitrary origin.

1-43. Let r be a regular closed curve lying in the xy coordinate plane, and
let the surface which it encloses be designated S . Suppose that thisz

forms the base of a right cylinder of height h. Then if V - V(x,y) and
U - U(x,y) are continuous scalar point functions with continuous first

derivatives within and about the cylinder, and if F is a two-dimensional

field defined by F - i V + 1 U, show, by means of the divergence
theorem, that

F.n' =d f div T dS

r S dz

where n' is the unit normal to dr directed away from S .a

Hence show that

(V dry-U drx) - / ( +i dSx x 3y z

r SI z

[This result was obtained as a particular form of Stokes's theorem in
Ex.1-31, p. 45. It is now seen to be a planar form of the divergence
theorem (which is also known as Green's theorem) whence the name
'Green's theorem in the plans'.]
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1-44. By an appropriate choice of V and U in Ex.1-43. above, express the area

of the ellipse5 +Y - I as a line integral and compute its value.

Ans: wab

1-45. Prove that, for non-zero values of r, div V = 0 where

ix + jy + k

r 3  (x2+y2+z2)3/2

and derive an expression for F such that V - curl F. Confirm this by

expanding curl F.

Ans: F = i•O y' -Xk -( X beyond the x axis.

(+z )-r (y2+z2)r

1-46. The solid angle subtended at an external point 0 by an open surface S is

given by _r• . dS, where r is the position vector of the typical

surface element relative to 0. Show that all open surfaces, having the
same simple closed bounding curve and a consistent sense of the normal
based upon associated currency, subtend the same solid angle at 0,
provided that no pair of surfaces enclose 0. Show further that if any
two such surfaces enclose 0 and the outward normal is taken as positive,
then the sum of the solid angles which they subtend is equal to 4w.
[See also Sec. 3.4.]

1-47. Two concentric circles are centred upon the x axis and lie in a plane
normal to it. The annulus defined by the circles subtends a certain
solid angle at the origin. Utilise the result Ex.1-45. to express this
solid angle in terms of line integrals of F around the circles.
Evaluate these integrals by (a) Cartesian integration, (b) direct

integration (noting first that F may be expressed simply in plane polar
coordinates) and so show that the solid angle is given by
2w(cos el - cos 82) where 61 and 02 are the angles made with the x axis

by the position vectors joining the origin to the inner and outer
circles respectively.

Show also that the solid angle subtended at 0 by a circular disc centred
upon and normal to the x axis cannot be evaluated directly, but only as
a limiting case of the above expression, and explain the reason for
this.

1-48. Let the vector point function V be defined by

where i is a constant vector point function and • is the position vector
relative to the origin of coordinates.
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Prove that div V is zero and V is solenoidal in all regions which

exclude the origin, and show chat V may be expressed outside the plane

y - 0 as the curl of F, where

a.az ayx a aT - 0 + -;(• + -1- -(,,•, Y +
+ yk (y2+z2)r (y +z )r -2 r

+Xt(y4Z2)r -(y2+z2)I 
+x ai

By reducing curl F to the form

r/a a a a (/a\+a

r 3 ( , x \r/ k r ~ay /(r

demonstrate that

"-curl x+ Z + curl a

Confirm that this holds at all points outside the origin.

1-49. V is an unbounded, solenoidal, vector point function which, together
with its first derivatives, is everywhere continuous. Obtain a

rectangular Cartesian expression for F such that V - curl F where F isY
everywhere zero, and confirm this by expanding curl F.

a: FA x x Vdz- J z V dy ; z F .Vx d

xvyop 0 XYo~zx ,Yo~z

xtyz xyyz fz y

or F X - - Vx dy - V dx

XYoz xyz xoyoz

1-50. Show that equation (1.12-3) continues to hold in the presence of an

interior closed surface of discontinuity of F when the normal component

of F is continuous through this surface, provided that div F is
continuous at interior points of the two subregions and upon S, and the
volume integral is understood to represent the limiting value of the sum
of the integrals taken over the subregions as the surface of
discontinuity is approached from both sides.
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1.16 Expansion Formulae for Gradient, Curl and Divergence

(1) curl(F±G±7H---) - curl F ± curl U ± curl H-- (1.16-1)

(2) div(F±GIH--) - div F ± div U ± div H--- (1.16-2)

(3) curl VF - V curl F + grad V xF (1.16-3)

(4) divVF - V div F + grad V.F (1.16-4)

In the above expressions V and F, C--- are differentiable scalar and
vector point functions. Brackets have been omitted from the ultimate
terms of equations (1.16-3) and (1.16-4) since only one reading is
possible.

The relationships are readily proved by writing out the operands in
rectangular components and differentiating in accordance with (1.8-6) and
(1.12-4).

(1.16-1) and (1.16-2) also follow from (1.8-7) and (1.12-5) respectively.

(5) grad(F.U) - (F.V)G + (G.V)F + F x curl G + U x curl F (1.16-5)

The operator (F.V) has been defined in the footnote to p. 4. It should

be noted that (F.V)G is sometimes written as F.VG because no meaning has

been assigned to YG and there can consequently be no ambiguity in the

grouping 30. (1.16-5) may be proved as follows

aG 3G BG
(grad(f'.))x ax (FxGx+FyGy+FGz) G . Fx ax x-+ Fy ax V --x--+ ---

aG +F G 3G GGx aG
Fx KF -y ' F --- F F - Fx -- '- x F + F --x x y y z az y ay z z, y ax

3G

ION ~~+ F zi

" (F.V)Gx + F y(curl G)z -F z(curl G) + -....

" (F.V)G + (F x curl U) + (G.V)F + (U x curl -F)

whence (1.16-5) follows.

(6) curl( fxG) - (G.V)F - (F.V)G + f div U - G div F (1.16-6)

30. VG in assigned significance in dyadic notation, but we are concerned
with this only in passing. (p. 592)
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(7) div(FxC) - C.curl F - F.curl U (1.16-7)

(1.16-6) and (1.16-7) are proved in a manner similar to (1.16-5).

(8) Fx(G.V)H - ((CxF).V) + Gx(F.v)i + (fxC)div H

+ (curl h)x(FxG) (1.16-8)

(9) F.((G.V)Hf) - U.((F.V)H) + (GxF).curl H (1.16-9)

(1.16-8) and (1.16-9) hold at all points where F and U are

defined and I is differentiable.

The relationships may be confirmed by routine expansion of the x
components of the individual terms.

Formulae (1.16-1) to (1.16-7) are used frequently and, together with
(1.4-1) to (1.4-3), should be committed to memory.

1.17 Deductions from Stokes's Theorem and the Divergence Theorem

A number of important integral transformations follow from the above
theorems. These are stated and proved below.

Where volume integrals transform wholly or in part to surface integrals,
the surface integration is carried out over all surfaces bounding the
region of volume integration. Similarly, in those cases where surface
integrals transform wholly or in part to line integrals, the line
integration is carried out over all curves bounding the surface of
integration. The sense of the positive normal for volume/surface
transformations and the relation between the positive normal and boundary
currency for surface/line transformations follow the conventions
discussed previously.

The point functions involved in volume/surface transformations are
supposed to be continuously differentiable throughout the closed region
of space concerned, ie, they are supposed to have continuous first
derivatives both at interior points of the region and upon its bounding

31surface (or surfaces) . However, in the event that the point functions
and their derivatives are continuous at interior points of a region and
possess limits as the bounding surface S is approached along the interior
normals, but are undefined upon S itself, the transformations relate the
limiting values of surface and volume integrals for a closed region lying
just inside S as S is approached at all points.

In general, the point functions involved in surface/line transformations
are supposed to be continuously differentiable throughout a region of
space which includes the surface of integration, although in certain
cases the functions need be continuous only upon the surface itself (see

31. The derivatives at points of the surface will be 'single-ended' if
the point function is not defined outside the enclosure,
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Ex.1-31 p.45)
3

'. Remarks similar to the above apply when a bounding
curve is a line of discontinuity.

The subscripts previously appended to the integral signs will be omitted
from now on, unless specially required, since the nature of the
integration is sufficiently indicated by the associated integration
variable and the presence of a closed or open integral sign.

(1)

fdS x grad V v d7r (1.17-1)

Stokes's theorem with F i i V yields

f(curl iV).dS-s Y V.dr = V dr

But

/(curl V) IdS - af0j V -k 'V dS

(av a N fd .'a V
-- , - dS - (dS -x grad V)

Jýaz Y Ty Z/

hence

If i (dS- x grad V) x fV drx

On putting F - J V and F - k V respectively, we obtain the additional
equations

(dS x grad V)y V J dr

f - j dr

32. Transformations involving scalar and vector point functions which are
defined only upon curved surfaces are treated in Ch.2.
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I (d x grad V)z V kVdrz

whence, by addition, we obtain (1.17-1).

An alternative proof may be developed on the basis of the expansion (1.16-3).

Let a define a constant vector point function on and about the surface of
integration. Then at each point of the surface

curl V a - grad V x a since curla -a

By Stokes's theorem

(curl V a).dS = -a.dr

Hence

dS.(grad V x a) = V a.dr

By interchanging the dot and cross of the triple scalar product we get

S(dS x grad V).-a = V a.dr

Some consideration will show that since a is constant this equation is_ equivalent to

a fd-Sx gradyV - -a V d~r

However, since a may have any direction the relationship can hold only if

f dSx grad V - jVdr

(1a)

f dSx grad V 0 (1.17-2)

This follows from (1.17-1) by arguments similar to those employed in associa-

tion with Fig. 1.6 to show that curl F.dS = 0.
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(2)

curl dT - dS F(1.17-3)

This is known as Ostrogradsky's theorem.

We will prove it by showing that the x components of the two sides are equal
for arbitrary axes.

Since

(curl T) dT - dT

we may replace it by f div GdT where

z 
y

whence, by the divergence theorem,

f(curl If)d - fT (iG+7F z 7F y )*dS (F~dS.-F~,dS.)

ie f (curl f) xdr - f (d'§xf) x
(1.17-3) leads directly to a definition of curl in terms of a surface integral
per unit volume. (cf. (1.12-5) for divergence.)

curl F Limi 1

"F ur F O -L ds x T (1.17-4)

(3)

fgrad V dT V ddS (1.17-5)

On putting F - i V in the divergence theorem we obtain

div " V dT V dSax f
whence !r V dT VTdSa x J x
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On putting F - I V and F = V V in succession we obtain similar equations
which, when added to the above, yield (1.17-5).

It follows that

grad V -lim 1 Vd'S (1.17-6)
-t+PO 7 1

('I)

(F x grad V)dT - V curl T dT + V F x dS (1.17-7)

This follows directly from a volume integration of (1.16-3) and a subsequent
application of Ostrogradsky's theorem.

(5)

f(F x grad V).dS- = V(curl V)d T .v Fdr (1.17-8)

This follows directly from a normal surface integration of (1.16-3) and a
subsequent application of Stokes's theorem.

(6)

fT.gradV dT - V(-div T) dr + V F.d-S (1.17-9)

This follows directly from a volume integration of (1.16-4) and a subsequent
application of the divergence theorem.

(7)

V grad U.d7S - Vdiv grad U dT + f grad V.grad U dT (1.17-10)

where the second derivatives of U are continuous.

(1.17-10) follows immediately from (1.17-9) when F is identified with grad U.

(8)

17 (V grad U-U grad V).dS - (V div grad U-U div grad V) dT (1.17-11)

where the second derivatives of V and U are continuous.

(1.17-11) is derived from (1.17-10) by interchanging V and U and subtracting
the result.
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These two transformations are of considerable importance and are known, in
the order in which they appear, as the first (asymmetrical) and second

(symmetrical) form of Green's theorem
3 3 .

(9)

f dr F - f(s f -fdiv dS + f dS xcurlF (1.17-12)

We will confirm this for the x component.

f (dCxF) x O (dryFz-drzFy) f {(dS xgrad Fz) - (dS x grad Fy)z)

(from (1-17-1))

a/ 3F aF aF aF
dS z - dSx --S- dSx + dS y
J $zax x az 0 x ay y ax/

{aFy -- x -dSF
S -div T dS + + dSyý- 3-y / z\ 5 3F

x x ax a x

ie F (d-xF)x - J(d.V)Fx fdiv f dS + f (d§ x curl 7),

(9a)

(dS.V)F - div f ds + CS x curl FT O (1.17-13)

This follows from (1.17-12) by arguments similar to those employed in associa-

tion with Fig. 1.6 to show that curl F.dS 0.

(10)

7rx (d7'-f) - (C.)f -,dvTC (d7S x curl T) + f d-S F

(1.17-14)

where the origin of i is arbitrary.

This may be demonstrated as follows.

From the usual expansion for a triple vector product we have

33. Not to be confused either with Green's theorem of p. 45, or with the
divergence theorem, which is sometimes referred to by this name.
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r x (drxF) d Fr.F dr-Fr.dr

But from (1.17-1)

fr.F dr - dS x gradr.F

and from (1.16-5)

grad r = (r.V)F + (F.V)r + r x curl F + F x curl "r

= (r.V)F + + +r x curl T since curl r -

hence

.dr r dS x (r.V)F + fdS x F + f dS x Cr x curlF)

Further,

(curl Fxr).dS = fx r.r (Fxcurl r + (gradFx)xr).dS

from (1.16-3)

S VF x -r.d-S r x dS .VFx by interchange of dot and cross

whence

T r .4d - ((-rxdS).V) Y

It follows that

jx(d4;4) 4-S f x (r.v) +f d3x +f d-Sx (-rx curl T) ( S.i
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But from (1.16-8) with dS substituted for F, r substituted for U and F sub-
stituted for H we have

dS x (.-.V) ((dV). - r x (dS.V)F + (dSx7) div F + (curl P) x (djxr)

hence

f'rx(dCxF) _fTx(dS.V)f - f xdivF dS+ J(curl F)x(dSx)+÷fd-SxGxcurl F)+fdchx

But expansion of the triple vector products shows that

(curl F) x (dSxT) + dS x (r x curl F) - r x (dS x curlF)

hence

r .f r (dS. -frxdivId +f: r O curl 7 +fdixF

(11)

F ('.V)d dr - f (-div f)d dT + T.d7 (1.17-15)

This transformation may be derived from (1.17-9) by identifying ' with G , G
xat _and G 2in turn, multiplying the respective equations by the unit vectors I, j

and k, and adding.

(12)

f(ix(i.V)') dT "i x (-div F)G dr + f (rXG)F.dS - f (?xG) dr (1.17-16)

where the origin of r is arbitrary.

Since (Tx(V.V)d) = ry (F.V)G - r zF.V)Gy

and

div l - Gz div T + (F.V)Gz
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it is easily seen that

f(x(F.V)d) drd r (-div F)(r yGz-rzGy) dT + (rv div GFz-rz div GyT) d

But divrGF = r div G F + G F.V r - r div G F + G Fyz y z z y y z zy

Similarly div r G F - r div G !+ G Fzy z y yz

hence

I (ry div G zF-rz div G yF)dr - i(rG-rG)f.dS- I(CF-OF) d-

whence

f (rx(F.V)) x d - (rx[)x(-div F) dr + f (xG)xT.dS - f (MG) x d-

from which (1.17-16) follows.

(13)

f(F. V)' dr div 'd iT -f( x curl 'd)dr ("d x curl T)dT + i dx (d-SxF)

(1.17-17)

From (1.16-5) it follows that

(FV)G dT f grad F.G dr - (G.V)F d - (F x curl G)dT- (G x curl F)dT

But div F x - F div G + G.VFX Xc x

whence

SdS d-f d+v dr+f(,.V)fdT

Also, from (1.17-5)

grad T.G E- c. S
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hence

CF. (V)- dT = V CSF. +f div - dr 'fF -6d4S -f(Fx curl G)dr (-f(x curl FP)d¶

or

f 0F.6,G dr - f7 div d - f ( x curl ,)d - f curl •)dr + fd x (-xf)

(14)

/ x(.V)) d / (x div U) dr Jr x x curl U) dr(1.17-18)

r x (d x curl 7) dT +fir x 66(AGx-~f)) - (MX)

where the origin of r is arbitrary.

From (1.16-5) it follows that

/7x(i.V)Gd d-r = r x grad VG dT - r x (-G.V)-f dT - r x (F x curl U) dT

- x (G x curl f) dr

NoW curl r F.G - Y.G curl 7 + (grad F.G) x r

O hence

fcurlr .ddT - f x gradF.*d - f(dSxr)F.G
from (1.17-3)

Further, from (1.17-16), with F and C interchanged,

(G U).Vd, + r x-d'f ,d.* = ,. ds (G-/,• d-
f (x(~V dr x (-div ~d x ~~-J()d

hence

f(x(.V))d f (+d. - f (r div cd) dT - f Z. CS

+ f(Ex-F) dT - fxcF x curl '6) dT - rx(G x curl F) dT
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But

(d7xr)F.G + (rxF)G.dS - (4SF).G- G(r.dSF)

as may be confirmed by expansion of the x components, hence

-f(dSxr)F.U (i-T).d~S =- (d-SXF)r.Gý + f '(-.d-Sxf) = rx(G6x(dS§xF))

whence

f(rx(F.V)") dT f (rxf div d) dT - fix(f x curl Z) dr - f 6(G x curl F) dr

+ i x(G5x(d§x'f)) -f (7Fx5) dT

EXERCISES

1-51. Confirm (1.16-8) and (1.16-9).

1-52. Prove that i (F x grad V).dS - f (grad V.curl F) dr

(Hint: Expand div(F x grad V) and apply the divergence theorem].

1-53. Prove that f V curl F.dS- f (grad V.curl F) dr

[Hint: Expand div(V curl F) and apply the divergence theorem].

1-54. Demonstrate, independently of the results of the previous two exercises,
that

f (F x grad V).dS - V curl T.dS

1-55. Show that

f(grad V x grad U).d - V grad U.d• - -fU grad V.d-

1-56. Prove (1.17-3) by expanding div(•xa), where a is a constant vector point
function, and applying the divergence theorem.

1-57. Prove (1.17-5) by expanding div V a, where a is a constant vector point
function, and applying the divergence theorem.
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1-58. Show that curl Cx7) - 2 where r is the position vector relative to an

arbitrary origin, and • is a constant vector point function.

1-59. Make use of (1.16-3) to show that curl r f(r) - 0 for all f(r).

1-60. Prove that div r f(r) - 3 f(r) + r f'(r).

1-61. Show that the vector area of an open surface with a boundary r is
dependent only upon the shape and orientation of r.

The area may be shown to be equal to f r x dr- where the origin of r
r

is arbitrary.

Demonstrate this by

(1) obtaining an expression for the area traced out by the position
vector as its end point moves around r, and using the identity

fi dS 0,

(2) expanding f 7 xdCr in rectangular components and performing the

associated integrations,

(3) substituting r for F in (1.17-12).

1-62. Show that f(dixV).F- fd.(V)-f .dr

where (diSxV) dSx dS dS

y a

3x By 8z

1-63. Prove that f(dixv) x Y - dr x Y

1-64. Prove thatf(dSxV)Vf d sX VV -fVdr-

1-65. Show that f ((i.v)b).di -; .f div Y dS + 'i . r f d T

where i is a constant vector point function.

1-66. Show that f ((GV)xF).dS - Z.f(curl F) x dS + ;.f dr x

where a is a constant vector point function.
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1-67. Let r denote a small, not necessarily plane , closed curve in the

immediate vicinity of a point 0, and let F be a vector point function
which, together with its first derivatives, is continuous everywhere in
the neighbourhood of 0.

Make use of the approximation

(T) + ((r.V)F)o

where 0 is the origin of r, Co show that

r dr x F - ((S.V)F)o -(div F) + x (curl F)o

where S is the vector area of a surface whose contour is r.

Confirm this by working from (1.17-12).

(Hint: Expand (drxF) and carry out the associated plane surface

integrations, noting carefully the currencies of the projections of r.
Then bring the resulting expression into the required form.]

1-68. Derive Kelvin's generalisation of Green's theorem, viz.

fW grad V.grad U dT - fvw grad U.dS - f V div(W grad U) dT

- f UW grad V.dS - fU div(W grad V) dT

where W, V and U are well-behaved scalar point functions.

1-69. Prove that

div(f.V)G - f.grad div d + grad Fx.grad Gx + (grad F x curl cd x

1.18 The Laplacian Operator V2

The operator V2 is defined by

aV 2 2 32
V2 --- I + 3 + (1.18-1)

It may operate upon both scalar and vector point functions. When
operating upon a well-behaved scalar point function it is equivalent to
the operator div grad:

U
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div grad V - (grad V)x - + 22V +
"ax Xx2 

+y
2  az2

ie div grad V - V.VV - V2 V (1.18-2)

For operation upon a vector point function we have

v2• - .E..+ 32. +.2.Bx2 ay2 3z2

But aax2  a 2x2 (iFx+JFF+kFz)

a
2 F a 2 F a2 F

- + - +

aai a2F'XT

Similarly for a-F and

whence

V2F iV 2 F + j V2 F + k V2 F (1.18-3)x yz

It follows that

(V2 7F) x V2 Fx - div grad F etc. (1.18-4)x x x

When V, together with its first and second (mixed) derivatives are
continuous, the operation is equivalent to grad div-curl curl, as may be
shown by expanding in the basic Cartesian form.

(grad div F-curl curl F)x

"+ n + a azz [La-[- (curl F)y]

2Fx aF a2F (aF aF a 'IaF a F_
" ~z -axay -axaz o. y ax ay/-az aT -x-l

32F x a2Fr x 2F 32F a2F3X2. +a_2 +j_ since y y etc." y2 aZ2 axay " ylx

V2Ix - (V2F)x
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whence

V2F - grad div F - curl curl F (1.18-5)

It has been shown previously that the results of the operations grad,
curl and div (defined by V, Vx, and V.) are independent of the set of
right-handed rectangular axes chosen and this must be true of the double
operations div grad, grad div and curl curl. It follows that V2 is
likewise invariant with respect to choice of axes when operating upon a
scalar or vector point function.

1.19 Invarlance of Grad, Div, Curl and V2 With Respect to Choice of
Rectangular Axes

Let ., j, k and 1', j', k' be two right-handed rectangular systems of
axes. The cosines of the angles between individual axes are set out in
the following table.

I' 11 mI nI
(1.19-1)

J' 12 M2 n 2

k' 13 m3 n 3

On resolving i, j and k in turn along the i', j', and k' axes we obtain

i - i'11 + P'1 2 + k'1 3

-" i'M 1 + T'M2 + k'M 3  (1.19-2)

- i'nj + j'n 2 + 'n 3

To demonstrate the invariance of grad V it is necessary to show that

AL ,+-' av + _ p v 1v -av +av
ax, ayl 3z' ax ay xz

At points where V is well-behaved,

3V_. 3V ax + V ay, + ý_V az
Bx' Tx i;7 ay x' a z ax'

3le VV+ V V +iV
ax, ax ay n z
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Similarly a - 12 av + 2av

and 13+ +m m a -y+ nn-aV

-f ,ax 
9V 

T+ 
a

Henc + -1 v, 1SV
Hence I" + + V a' may be brought into the form

('11+7j'12+k'l3) aV + (i'ml+7j'm2+k'm3) L-+ (I'nl+7jn2+k'n3) ý-

and from (1.19-2) this is seen to be equal to

The proof of the invariance of div F requires that additional
relationships be established between the direction cosines. Since

T.i = j.j k.k I 1 and 1.j - j.k = L.T - 0 we have from (1.19-2)

2 2

11 + 12+ 11 - I

mI + ma + M2 (1.19-3)

nl+na+n3 1

and

1Im1 + 12m2 + 13m3 0

mini + manz + m3n3 - 0 (1.19-4)

Un11 + n212 + n313 - 0

Now Fx, = (iFx+JFy+kF) . p'

- liF +miF + niF

BFF aF aF
hence XT 11 ax li + mi w +ni

+ It lI + x + -n }

{ •ay aF
"+ mlJa 11 + DF ml + DF nf
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It may be shown similarly that

3F, WF BF 3F
y 12 a 1 + 'y M2 I X 21

12+ aF 3F~

"2÷ 2 y 2+ ;, Y1'23

S3F aF aF )"+ n2 L 1' 2 + j 2 + a- '21

aFz , ,F x 3 F 3Fa -"T -- 13 + ' "3 + x n3and -13 lax a+ 3 z3+

.'-F aF 3F

"+33 Dy 13 +a'- z 3

F Fz aFz 3Fz
+3 x 13 + - 3 + 3z

Upon adding the above expansions, collecting terms and substituting from
(1.19-3) and (1.19-4) we obtain

aFx, _ F, +F, aFx +F +Fz

x + By, +z' ax ay +z

as required.

Curl F may be shown to be invariant with respect to choice of axes by a
similar analysis. It is necessary, for this purpose, to invoke three
further sets of relationships between the direction cosines, based upon

the equations xJk, J x k=i, k x i j and P' xi' -k',

T' x k' - 1', 1' x I' - j'. The manipulations are left as an exercise
for the reader.

As mentioned in Sec. 1.18, the invariance of the Cartesian forms of grad,

curl and div is sufficient to ensure the in-ariance of V2 V and V2 F via
equations (1.18-2) and (1.18-5). This may be demonstrated independently
by a direct transformation of the second derivatives (see Ex.1-72. and
1-73. below).
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EXERCISES

1-70. Show that VV and V.F remain unaffected when a left-handed system of axes
is substituted for a right-handed system.

1-71. Show analytically that V x F is invariant with respect to choice of axes
when working within either a right-handed or a left-handed system, but
that it changes sign when one system is substituted for the other.

(Vx(VxF) is consequently invariant under all conditions.)

1-72. Develop transformation formulae for the second derivatives of V and
thereby show that

+y2 + a2

is invariant with respect to choice of axes and to transfer from a
right-handed to a left-handed system.

1-73. Use the result of Ex.1-72. to show that

V2i - TVOF + V2F + V2Fx y z

is invariant to the same extent as V2 V.

1.20 Moving Systems and Time-Dependent Fields

1.20a Time rate of change of scalar or vector value at a point which
moves in a time-dependent field

Let V - V(x,yz,t) be a scalar function of space and time which, together
with its first space and time derivatives, is continuous both in space
and time in the neighbourhood of xo, Yop Zop to.

Suppose that corresponding to the times t and t + At a moving pointo 0

occupies the positions xo, Yo z 0 and x0 + Ax, y + Ay, zo + Az. Then

the change in the value of V at the point during

this time interval is given by

AV - V(Xo+Ax,yo+Ay,zo+Az,to+At) - V(xoyozo,to)

- V(xo+ax,yo+Ayzo+azto+At) - V(x oyo,2o0 t 0 +At)

+ V(Xoyozoto+At) -V(xoyozoto)
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An appeal to Sec. 1.2 and the mean-value theorem reveals that

"A \ ( xAx +( )AY + Az + At
xvx x x

0' 00

Yo + Ay y' YO YO

z + Az z + Az z' z
o 0 0

t 0+ at t + At t + at t'
o o 0

where t0 < t' < t + At and x1, y'. zi have the meanings prey-

iously assigned,

whence it follows that

Lin AV (3V + jV Vdx + V• #y+V dz)

At-.O Tt (.4k = i ( 3 .a dx+3y d a z r)

0

or, in general,

dV 3V V + V _v

++ -+Lvidt oYy zo

is dt it + (V.V)V (1.20-1)

dt t

It will be seen that the partial derivative refers to the rate of change
of V at a fixed point, while the total derivative refers to the rate of

change of V at a point which moves with the velocity ';and coincides with
the fixed point at the instant under consideration.

If 1 is a vector function of space and time having the same degree of
continuity as V, then

d t 1F + (1.20-2)

This follows directly from a substitution of the rectangular coop-

oments of F In (1.20-1), multiplication by the unit vectors andh
and subsequent addition.

When V and are invariant with respect to time the partial derivatives
are equated to zero, and the above formulae reduce to
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dV (v.V)V (1.20-1(a))
dt

and

dF
- (v.V)F (1.20-2(a))

1.20b Time rate of change of tangential line integral along a curve
which moves in a time-dependent field

In the following analysis the motion of the curve of integration will not
be restricted to one of pure translation. Change of shape and of length
will be permitted so long as the velocity vector is (a) continuous in
time at every point of the curve, and (b) continuous along the curve at
every point of time, in the interval under consideration. The vector
field in which the curve moves, and its first space and time derivatives,
are supposed to be continuous both in space and time.

Two configurations of the integration path (which is assumed to be open)
are shown in Fig. 1.13a. The curve PQ corresponds to the time t whileo

P'Q' corresponds to t 0 + At. The positive sense of integration is

shown by the arrows.

p

bb

0

b

Fig. 1.13a
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The change of line integral (say, AL) which takes place during the
interval At is given by

Q1 Q

AL- = (F) C0+at drT- (F)t . dr

This may be written as

Q1Q Q Q
AL (F 0 At .d- (F~) .d~r+ tJ+A di (F

fPT to+At • fQp to0+At • f P to+At • f P t

Pt  p PP

(This expression is seen to involve integration along a path which does
not coincide with the moving curve at the time specified for
integration.)

It follows that

dL Lim I
dt At0 (F t+At d- . dr

+ O ti I (F)t +At dto - d

We now define the significance of the total and partial derivatives with
respect to time in the present context by writing the above as

SF.dr Li (F) ddr- F d(rFQ At+O At t t
0
At - to+At

I P

+{ : .dr} (1.20-3)

0

It is clear that

- Fddr (Fdi) and fL . df r - Fl . di)
d1  - dt at at

- o
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Further, since partial differentiation involves a fixed path, it is
permissible to write

Q QI (y.dA-:) - F .F -

Pt J at r

the same line elements being used for successive integrations in time.
This operation is not valid for the total derivative unless the motion of
the curve is one of pure translation, in which case the individual vector
elements are unaffected by the movement.

The limiting expression in (1.20-3) may be transformed into a line
integral over PQ in the following way.

Suppose that a and b are closely-spaced points of PQ and that a' and b'
are the corresponding points of P'Q'. (This means that those points of
the moving curve coincident with a and b at time t are coincident with

0

a' and b' at time t + At.) The rectilinear figure abb'a', shown0

enlarged in Fig. 1.13b, is composed of the triangles ebb' and ab'a'.
In general these triangles are not coplanar; their vector areas are

given by JAr1 x ;bAt and aNi, x vaAt when the positive sides of the

surfaces face the reader. va and vb are defined by vaat - a' and

vbat - b', so that they represent mean velocities over the time interval

At.

"a Pia

AAF

Fig. 1.13b
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On applying Stokes's theorem to each of the triangles in turn we obtain

b b'

P. j. + iF.Cr+f T.d " (curlf).dS

a fb fb d ebb'

a' a b'

and . F'dr +fb -P. d ar + .d - j (curl ).dS

bla' a abl'a

The value of F at each point will be taken as that obtaining at the time
t + At.

0

By the mean-value theorem for integrals the sum of the above equations
may be written as

b' a'

F .Ari +-f F.dr - Y, . Ia,- F.d7r

(1.20-4)

- i ( XxV ) (curl F)Pi At + I (Jri,a) . (curlf) Pi At

where Fi and Fit are the values of F at certain points of ab and a'b',

and Pi and Pit are points of the triangular surfaces abb' and ab'a'.

By writing Ari, - Ai + AVi At where AVi - - va and employing (1.3-3)

to express (curl F) and (curl F)Pit in terms of curl F and its

derivatives at a neighbouring point, it is found that (1.20-4) may be
replaced by

b' a'

Fi.Ar +f F.dr- Fi,.A-rI, F.dr

b a

(1.20-5)

- (A7rxb) . (curlF)b At + I (Arixvs) (curl F)s At +
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where

ii (rrxib) ((ePi.V)curl F)b At + i (A7r x ((aP ,.V)curl a At

+ j ( xa) . ria a; t)2 + ....

Since bPi and aPil have magnitudes of the order vaAt it is seen that

second or higher powers of At appear implicitly or explicitly as
multiplying factors in all component terms of ei.

Suppose now that PQ and P'Q' are divided into n matched pairs of elements
such as ab and a'b' and that both sides of (1.20-5) are sutmed over all
of these. This yields

n n

ZFC-bri +v;ýat.,, Ar1 , - vAtJ PP,

i-1 -

n a n

- n a~ix;ýb.(curl N)at + 1 (Arix 8a .(curl F) aAt +n

i-1 i-1 i-l

where FQ' and F are the values of F at certain points of the straight

lines QQ' and PP', and where v QAt - •' and p at -

Then on interchanging the dots and crosses of the triple scalar products

and taking limits as n- and Ar-0 , we get

Q ~QIf i.dr + VQat. 'FQQ - F.dr - vpAt.F pp,

Q n'

X f curl b).d;At + IQ(-v x curl T).drat + Lim EnC

Arieo i-I

or, with the subscript t0 + At restored,



Sec. 1.20] THE DIFFERENTIAL AND INTEGRAL CALCULUS OF VECTORS 91

QI _QIQ, (t a-'r - (1) to+At' d•

Pt P

Q n

"VQAt.(F QQ)to+a - pAt.(FPPto+t - {vx(curl F) t+At .drAt - Lim T CI

ArO. i-I

where VQ, v p and v continue to represent mean vector velocities over the

interval At.

Hence

Lim I (F) .dr- (F)C + dr - vQ) -C .)
At.0a t t+At . Q °t PPt

(1.20-6)
Q

-f ( x curl f)t .,r

n

since the components of -i Lim 7 i comprise the products of At,
atS~ Ar .0 i-1

(At) 2 etc with expressions bounded in upper value.

It is clear that v., vp and v as they appear in (1.20-6) are

instantaneous velocities at the time t and that TQ and FP are to be

evaluated at Q and P.

The right-hand side of (1.20-6) may be replaced by

QQ
S(v.")to di-g ~ X curlF) dr

0t0

On substituting this in (1.20-3) and droppinp, the to subscript we obtain

the general relationship

Q Q Q Q

it F -.d !. f Fdr + fd L (;.F) do - / ( x curl F).dr (1.20-7)
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When the motion is purely translational a scalar field v.F may be

generated from F and the unique vector v. This field has continuous
first derivatives in the neighbourhood of the integration path and allows
us to write

IQ

Q- (;.)p - ] (grad V.F). r
P

in which case (1.20-7) reduces to

d Q Q F -
P (a-+grsdv.F-vxcurl .r (1.20-8)
P P

For the particular case of a closed curve in motion (1.20-7) is seen to
become

fF.dr T) I- xcurl). (1.20-9)

When the field is invariant with respect to time the general expression
reduces to

Q Q Q
d t"• "•
dt y.- (C.;) ds - j (; x curl F).dr (1.20-7(a))

(1.20-7) may be derived more easily, but in a less fundamental manner, by
means of the following analysis.

Lot r represent an element of the moving curve and let P be a particular
point of it. Suppose that P is coincident with the fixed point P at theo
time t . Then, on the understanding that the expressions below are to be

0

evaluated at t - to, we may write

-• (7p.) - (7 . + ((V)p . + ( 0) 1

00

00

\a 0o4P oA 0 d

where (G)P is the velocity of P when coincident with Po o 0

- . r . .0
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The vector (v)p and the vector point function F (at time t ) define the
0

field (v)p .F. On applying (1.16-5) to this we get
0

grad (v) .F - ((v) .V) + (v) x curl. F
o 0 0

whence

S((F)p.AAr) - Ar + (grad(v)p .F)p A• - ((v)p x curl F)p Ar
P0 0 0 0

0

(1.20-10)

+ (Ar)
0

It is readily shown from Fig. 1.13b that

d-t (Ar) - (v)b - ( -)a - Av

where Ar - ab

Further, since (m)p .F has continuous first space derivatives,
0

(grad() F) A - A(()p .F) + - (V)p AF + el
P* P.'r
0 0 0 0

where A( ) b ) - ( )a and where i/(()P .AJ)+O as A-r+O
0

Substitution in (1.20-10) then yields

d -(3') + .- + - x .- + £1
S((F)0yAr) - P Ar+ (v)p .0 (F)p .a- ((V)p x curlF)p 0 r + cl

P 0 0 0

0

or

".d ((M)p.Ar) - Ai A(v.F) - ((v)p curF) Ar + el + C2

P 0 0
0

- where E2 /A(V.F).0O as ar+O
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On summing (1.20-11) over all elements of PQ the term At(v.F) is replaced

by (V.F)Q - ( P.F)p; on taking limits as the number of elements is

increased indefinitely and the magnitude of each approaches zero, we
obtain

Q Q Q Q

dt F ~ d r d 7 d + L. d -d F.dr (v.F) ds- F (x curlF).dr

1.20c Time rate of change of flux through a surface which moves in a
time-dependent field

As in the previous analysis no restriction will be placed upon the nature
of the motion, apart from the requirement that the velocity vector be
continuous in time at every point of the surface, and continuous from
point to point across the surface at every instant of time, within the
interval under consideration. The vector field and its derivatives are
supposed to exhibit the same degree of continuity as before.

Two configurations of the moving surface (which is assumed to be open)
are shown as S and S' in Fig. 1.14a corresponding to the times t and0

t + At.
0

oboi.'1

a b c d

Fig. 1.14a
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The change of flux during the interval At is given by

AN " f (F)to+At.dS - f (F)t ,0S

S S

where the currency around the contours r and r' define a consistent
positive normal at S and S'.

This may be put into the form

AN - J t,+At. - 7 t0+At. .dS + f (F) t+At. ds- (Y) t AdS
SI S S S

whence

! -m - L -I , f ( )t+At* ds + t

(1.20-11)

The limiting term must now be transformed into a surface integral over S.

bd

[Arrowheads have been placed in the centres of the associated

vectors to ease congestion. ]

Fig. 1.14b

""i if
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The detailed treatment of the transformation is laborious and will not be
set down here. It is suggested that the reader carry this out, as an
exercise, along the following lines.

Let ab,cd - be closely-spaced points of r and let a',b',c'.d' - be
the corresponding points of r'. These points are joined as shown in
Fig. 1.14b to form a series of contiguous triangular faces which
approximate the curved surface traced out by the contour of the open
surface during its movement. The surfaces S and 3' are themselves
approximated by polyhedral surfaces composed of two sets of triangular
faces whose vertices are corresponding points lying in S and S'. Some of
these are shown in the figure.

The divergence theorem is applied to each of the solid figures formed by
Joining the corresponding vertices of matching triangular end pieces and
the result is summed over the whole system. Cancellation of the surface
integral occurs over internal interfaces so that the final expression
relates the external surface integral to the sum of the individual
products of volume and divergence.

By invoking the mean-value theorem for integrals, together with (1.2-9)
and (1.3-3), and by taking limits as the degree of subdivision is
increased indefinitely, an equation is formed between

(a) the surface integrals of 1 over S and S' (see Ex.I-27. p. 24)

(b) the line integral. dr d v At.F where v is the mean velocity of

of the line element during the interval At

(c) the surface integral fI At div F.dS where v is the mean

velocity of the surface element during the interval At

(d) a series of terms similar to (b) and (c) but involving space

derivates of F and div F with multiplying factors (At) 2,S~~(At)3 - .

Upon dividing the equation by At and taking limits as At+O the factors v,

' and div T, which were to be evaluated in the first instance at the time
t + At, are finally referred to the time to, at which instant the

moving surface and the surface of integration coincide. Coincidentally,
the terms in (d) disappear and (1.20-11), with subscript t deleted,
becomes o

,t dS T. f S Fd+f div T. Z - f (vx_) .4i (1.20-12)

When the motion of the surface is one of pure translation the vector

field ;;x F is defined at all points where F Is defined and has equal
degrees of continuity. In this case (1.20-12) may be replaced by
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-• f F. f = + V div 7 - curl(Vx) ). ds (1.20-13)

S S

The particular case of a closed surface may be treated as a combination
of two open surfaces. The line integral in (1.20-12) then cancels around
the common bounding curve and we are left with

d-j F.4S = -Lf F.d +f v div F.dS (1.20-14)

S S S

In the case of a time-invariant field (1.20-12) simply reduces to

d I-F.dS - f div'.dS-fd ((xiF).dir (1.20-12(a))

S S r

An alternative derivation of (1.20-12), which is analogous to the second
derivation of (1.20-7), will now be given in detail.

Let AS represent an element of the moving surface and let P be a
particular point of it. Suppose that P is coincident with the fixed
point P at the time to. Then, on the understanding that the expressions

below are to be evaluated at t - to, we may write

d P) +
d- ((F)p.AS) - (d .AS + (F)0 (' )

- •(•),.AS + ((v)p .V)) .& + ()p . (AS)o P o

where (V)p is the velocity of P when coincident with Po"
0

The vector (v)p and the vector point function F (at time t ) define the
0

field (v)p x . On applying (1.16-6) to this we get
0

curl(()p xi) - - ((;)p .Y)F + ()p div F
0 0 0
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whence

d ((F)p.) - .~) + (v)+ (div F) .iS - (curl((•)p xF)) CAS
0 0 0 0

0

(1.20-15)

+(iF)p (AS)
0

Since the vector area of a closed surface is zero, it is easily seen that

the rate of change of AS with respect to time is equal to the rate at

which the bounding curve of AS sweeps out area. On taking account of the
relationship between the positive normal at the surface and the currency
of this curve it is found that

d (A C -V dr-

AS

where the subscript indicates the element of area bounded by the curve
around which the line integral is taken.

Further, since (v) xF has continuous first space derivatives, it
0

follows from (1.9-3) that

(curl((V)po ))Po " " ) ((V)p°XF).dr - y

AS

where the ratio of y to the line integral approaches zero as AS-0.

Substitution in (1.20-15) then yields

d - 4*p
"W (()V.l) )P +• (-v)p (div T)p .ag

(1.20-16)

+fiA {((x(v) ) + ((N 0 x-V)}.a~r+
AS 0

If, for the typical point of the curve bounding AS, we write

- (T)p + A7 and V - (;)p +AV
0 0



Sec.1.20] THE DIFFERENTIAL AND INTEGRAL CALCULUS OF VECTORS 99

then the line integral in the above equation becomes

i ((f)p0 x()p0 ).d-r + A (j).d• - a (rFxbv).dr (1.20-17)
AS • S AS

The first term of this expression is zero since (F)p x(v) is constant,
0 0

and the ratio of the third term to the second approaches zero as ASOi.

On substituting this in (1.20-16) and summing over all elements of area,

the term 4a ( x).r is replaced by fr (Fx0.6 because of cancellation

of the line integral over internal contours. If, now, limits are taken
as the number of elements is increased indefinitely while the size of
each approaches zero, we obtain

dI f. dS f dS" + f V div F.dS + j (Fxv).dr

S r

EXERCISES

1-74. Show that the rate of change of density at a fixed point in a field of
fluid flow is given by

- - div(pv)
at

Hence show that the rate of change of density at a point which moves
with the fluid is given by

t -p div v
dt

1-75. Derive from first principles an expression for the rate of change of the

line integral of a time-dependent field F aloug a straight line PQ, when
PQ is stretched without change of orientation. Confirm this by making
the appropriate substitutions in (1.20-7).

1-76. Show from first principles that the rate of change of the flux of the

time-dependent field P through a plane surface S, which is stretched
smoothly while remaining plane, is given by

at r

and confirm this by substitution in (1.20-12).
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1-77. Write down (1.20-9) in terms of some vector point function C (rather

than 7) and so derive (1.20-12) from (1.20-9) for the particular case:

div F - 0.

1-78. In the analysis which follows (1.20-10) confirm that

£i/(()P as r
0

C2/&(V.f)O as ACr

Show that the third term of (1.20-17) is one order smaller than the
second, and that the ratio of the third to the second consequently tends

to zero as AS.O.

1-79. Prove (1.20-7) for movement of a rigid contour in the following way.
Since the movement may be reduced to one of translation through some

point 0 and rotation with angular velocity w about an axis through 0 we
may define a velocity field both on and off the contour by

S- 0 + ( -r)

where v0 is the velocity at 0 and r is the position vector of the point

in question relative to 0.

By combining (1.20-2) and (1.16-5), with G replaced by v, show that at
each point of the contour

I NdF 3F --- -- uld -= j+ V(v. - (F.V) - (v - curl F) - (F X curl v)

=- + V(v.) - (w x 7) - (v x curl x) - (F X 2•)

Show further that

d -dF - -
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and combine these results to obtain

dt
dt (Fdr) - -F d-r + (V6J )).d-r (-V x curl F).d-r

whence derive (1.20-7) by integration.

1-80. Make use of (1.17-15) to show that

fv dt - f (-div v)r d +i r v.dS

where v is a well behaved vector point function and r is the position
vector measured from an internal or external origin.

Hence deduce that if a homogeneous incompressible fluid has no normal
component of velocity upon a bounding surface the linear momentum of the
enclosed fluid is zero.

1.21 Time Rates of Change of a Vector Quantity Referred to Coordinate Systems
in Relative Motion

Let S and S' represent two rectangular systems of coordinates34 whose

unit vectors are 1, 3, 1 and Y', J', k' respectively.

A vector quantity F, observed in both systems, may be expressed as

F Fx Fy + +kF (1.21-1)

or

i- P'S1 + 31F y, + k'Ff

dIf d•ifferentiation with respect to time is den',ted by • in system S andd

by -- in system S', then, because 1, J and k are fixed in S and V, ,'dt

and k' are fixed in S',

- dF dF dF
d 'x" + -Y 1 + k- (1.21-3)

dt dt dt dt

34. The use of S to denote both a surface and a coordinate system
should not lead to any confusion.

not lead
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and

1- , + d + • (1.21-4)

Since the time derivative of a scalar is the same in both cystems

dF .(dF' dF,, dr
= x) and d = etc. (1.21-5)

dt ld t dt / tc

Suppose nov that S and S' are in relative motion with the corresponding
coordinates axes maintained parallel. Then V' - I and F, - Fx etc hence

dt "- This continues to hold for a random orientation of the two
systems so long as the relative motion is one of pure translation. In
this case the direction cosines of the axes, taken in pairs, remainconstant in time, and (1.21-4) may be transformed into (1.21-3) by means
of the formulae developed in Sec. 1.19.

The most general form of relative motion of S and S' involves rotation
about some common instantaneous axis in addition to motion of trans-
lation. Suppose that, relative to S, S' has an angular velocity w. Then
it is easily shown that

di' i' ddWX. dk' k
dt ' dt dt-

hence, from (1.21-2),

dF-~ di, F dFx,d- t- Fx + L '

CI X' F +• -' (--

or dt ( 7) + -.- (1.21-6)

Alternatively, from (1.21-1),

('d- 
/dF '

ýd L\\dt. F) .- Li
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But(di- - - i because the angular velocity of S is -w relative to
Bu dtI

S', hence

- (-IxiF + i dF

1=- ) ) i-

(IF +dF

or "-(txj) + t-i-

and this is identical with (1.21-6)

A relationship between the second time derivatives of F in the two
systems may be found by differentiating (1.21-6).

-~ (x)L(( x~) yL + FL ~

" ( d+ + ,

++ + -)

The last two terms derive from the substitution of \jd- for F in

equation (1.21-6) since this equation is unrestricted.

It follows that

2- 4F '1' /d2\'f
- 44t x F) > (;T F)) + y2< t,)) + (1.21-7)

d
2

F d
2

F d
2
F

and .- j +3' )+,' + -- )

Correspondingly,

- x)+( x (Fx))- (2 dx (1.21-8) F i
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EXERCISES

1-81. By means of the transformation formulae of Sec. 1.19 show that
(.dFN' d-F

= f- I i the relative motion of the coordinate systems, S and S,

is one of pure translation with random orientation of axes.

1-82. If the rectangular coordinate system S' has an angular velocity -W

relative to S, show that A - ; . p.

1-83. Let 0 and 0' be the origins of the rectangular coordinate systems S and
S', and let P be a moving point whose position vectors relative to 0 and

0' are r and r' Then if 00' - we may writeo

r- r +r' - 0 ++'x'+j'y'+k'z'

where (x',y',z') are the coordinates of P in S'. By successive
differentiation of this equation with respect to time in system S, show
that,

A dro

dt - + \dt /

and

- + x '+ (; x • ) +- - 2 (ý) + d

These equations describe the relationships between the velocities and
the accelerations of P in the two coordinate systems. The second
equation is known as the Theorem of Coriolis.

1-84. Derive the results of Ex.1-83. by the substitution of an appropriate
vector quantity in (1.21-6) and (1.21-7).

1.22 Complex Scalar and Vector Fields

Our considerations to date have been restricted to those scalar and

vector fields which are characterised by pcint functions having real

magnitudes. If fi and f 2 and F1 and F2 are such scalar and vector point

functions and j - 41, then fj + jf2 and "1 + if2 represent complex

fields. When F1 and F2 are collinear Fi + JF2 has a definite direction

and a complex magnitude; when non-collinear it may be treated as the sum
of fields having real and imaginary magnitudes.

It is evident that
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a (fl+Jf 2 ) = a- fi + j -a f 2  for n - 1, 2, 3 --
ax ax ax

and

n(FI+Jf2) - '- F1 + J -- F 2  for n - 1, 2, 3 ---

axn axn axn

with similar equations for differentiation with respect to y, z and t.
It follows that

grad(fl+jf 2 ) - grad fj + j grad f 2

div(Fl+jF2 ) - div F1 + j div F 2

curl(Fl+jF 2 ) - curl F1 + j curl F 2

whence

div grad(fl+Jf 2 ) - div grad fl + j div grad f 2

grad div('l+JF2 ) = grad div F1 + j grad div F 2

curl curl(Fl+jF2 ) - curl curl F1 + j curl curl F 2

We have also

Sgra 1fl + Jf2  (f+Jf 2 )
2 

(grad fl+j grad f2 )

If we write

fl +Jf 2  - fgi+j2 - g

1F +J9 2  - G + jG2 - G

then we may show that
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curl curl F - grad div F- V2f

grad(fg) - f grad g + g grad f

div(FxG) - G.curl F - F.curl G

grad(F.G) - (F.V)G + (G.V)F + F x curl G + G x curl F

curl(F~ - (U. V)'f- (F. V)G + T div G U div F

F.{((G.)H} " G.{(".V)1) + (GxF).curl H

Further,

curl V F = curl F + (gradV) x F

div V F = V div F + (grad V).F

div(V grad U) - V V2 U + grad V . grad U

Each of the volume/surface/line integral relationships developed
previously continues to hold for complex fields. Thus, in addition to
the complex forms of Stokes's theorem, the divergence theorem and
Ostrogradsky's theorem, we have, inter alia,

SdS x grad - fVdr

dF +vSdt -t

Ld [ i- . d + F) ds- x curl F.dr

at /Fd+ dsv)

dr x F (dS.V)F - div F dS + dS x curlF

If the notation Re (} is employed to denote tte real part of a complex
expression within the brackets, then it is seen that
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Re (grad(f 1 +jf 2 )1 - grad Re (fl+Jf 2 }

Re {div(Fl+jF2 )} - div Re {F1 +jF 2 }

Re {curl(FI+JF2 )} - curl Re {1f+jf2)

and

Re {div grad(fl+Jf 2 )} = div grad Re {f l +Jf 2 l

Re (grad div(F 1+JF 2 )} = grad div Re {F1 +JF 2 }

Re (curl curl(F1 +JF2 )1 - curl curl Re {F1+fF2 l

Since the products of both complex scalars and complex vectors can be
expressed as the sum of real and imaginary components, we have, in
addition, such relationships as

Re {div(FxG)} = div Re {FxGI

and

Re (div grad fg} - div grad Re (fg}

Similarly,

ReR (ý - LRSRe ý g 1 (fg - at }

212 - f '. S
Re ({ FxG.dr} - Re (FxG.d•)

Re (V2(F.Gd)} V2 Re flj.GI

It should be noted that

Re (fM Re (g) a Re (fg)

Re (lx Re (Z} Re (MxG)

Re (div 71 Re {div G} a Re (div div G}

Clearly, these inequalities do not conform to the basic relationships
from which the previous equalities were derived, viz
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Re {p(f 3+Jf4)} - p Re {f 3 +jf 4 }

and

Re {p(F 3 +JF 4 )} - p Re fF3+JF4}

where p is a linear operator.

It should also be borne in mind that the trigonometric functions are not
linear operators. Thus it is easily shown by expansion in exponential
form that

sin (f+jg) - sin f cos jg + cos f sin jg

- sin f cosh g + j cos f sinh g



CHAPTER 2

CURVILINEAR COORDINATE SYSTEMS

2.1 Curvilinear Coordinates

If three single-valued scalar point functions u, v and v are defined
throughout a region of space R, and have level surfaces (u - constant,
v - constant, w - constant) which nowhere meet in a common curve or
coincide, then we may associate with each point of R a triplet of values
known as its curvilinear coordinates. These are the values assumed by u,

1
v and w on the particular level surfaces which pass through the point

The level surfaces need not be planar, and in this respect the
curvilinear system differs from the familiar Cartesian system of
coordinates where the level surfaces of x, y and z are composed of planes
which lie parallel to the yz, xz and xy coordinate planes through the
origin.

w curve

_u crc t

v / /woont /

. ', /
iu ", / /

Fig. 2.1

1. For a detailed analysis of the relationship between Cartesian and
curvilinear coordinates, see I.S. Sokolnikoff, "Advanced Calculus", Ch.12,
McGraw-Hill, New York (1939).

109 -.
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In Fig. 2.1 the point P is shown as the intersection of level surfaces of
u, v and v. These surfaces are known as the u, v and v coordinate
surfaces through P. They meet pair-vise in coordinate curves. Thus the
v and v surfaces meet in a curve along which v and w are constant and u
varies. This is called a u curve. Similarly, the u and w coordinate
surfaces meet in a v coordinate curve, and the v and u surfaces in a w
curve.

The tangents to the coordinate curves through P define the coordinate
axes at P. The unit vectors lying in the coordinate axes and directed

A A A
towards increasing values of u, v and w are denoted by u, v and w.

A A A.
Unlike the unit vectors L, 3 and k, the vectors u, v and w are, in
general, functions of position because of variation of orientation.

o 0

w\ -w

V =V 0

• "**"V V + AV

sU

U u + AU

In~ ~ ~ ~ ~ ~~Fg Fi.22tepitPha.2nasge h oodnts(o o o

and the point Q the coordinates (u + Au, v 0 Av, w + Aw). The six

associated level surfaces have been drawn and are seen to enclose a
curvilinear volume element.

The curve PT is the intersection of the level surfaces v - v and w - w .

It is consequently a u coordinate curve, the increment of u between P and
T being Au.
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If we denote PT by (Ar) where r is the position vector relative to, say,

the origin of rectangular coordinates, then we see that as Au+O the

direction of (7) u approaches that of the coordinate axis at P.

Thus

Lim (ar) A

U u h

where h, is some positive scalar quantity.

On writing the above limit as ar and extending the notation to motion

along PU and PR, we get

u h, v h (2.1-i)-u uhV 2  v- h-

or

ds ds ds
du -. _v ; v - h2  ; .! -h 3  (2.1-2)

where su, a and sw represent distance measured along the u, v and w

curves.

bh, h 2 and h3  are known as metrical coefficients. In the most general

case each is a function of position.

It follows that

(A)u - PT w u hIA

( .) " PU t v h 2 v

(A)w - PR t, w h3 Aw

The vector displacement between P and Q is given by

&r PQ '+ RS + S'Q 7R + PU + PT
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The substitution of PU for RS and of PT for SQ may involve approximations
2

both of magnitude and direction2. However, as the dimensions of the
volume element approach zero the curvilinear coordinate surfaces
approximate to a plane parallel system, so that we may write

A A A _

Ar - u hjAu + v h2 Av + w h 3 Aw +

where I1/lil;lO as Au, Av, Aw.O

whence the differential form becomes

- A & A.
dr - u hl du + v h 2 dv + w h 3 dw (2.1-3)

The scalar distance associated with this element of displacement is found
from

ds 2 - d7r.dCr = h du 2 + hi dv 2 + hi dw2

+ 2 u.v hlh2 du dv + 2 u.w hlh 3 du dw (2.1-4)

A 1
+ 2 v.w h 2 h3 dv dw

It may be shown in a similar manner that the differential form of the
scalar area of a surface element which lies within the u coordinate

surface and is bounded by v and w coordinate curves is given by 3

IdSul - l(vxw)h2h3 dv dwv - 19a -w 3 dv dw (2.1-5)

Corresponding expressions hold for IdSvI and IdSw1.

2. No such approximations are involved in the case of a rectangular or
oblique Cartesian system.

3. The sign of dS will depend upon the sense of the positive normal at the

element relative to u.
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The magnitude of the volume element is likewise given by

A A A

dT - [(ixv.) h 1 h 2 h 3 du dv dwv

or (2.1-6)

dT - 1d(uu " dv dJ

Since r = ix + Ty + kz it may also be expressed as a determinant:

ax ay 3z
Bu au au

d = LX 2z •v Idu dv dwl (2.1-7)
av av a dv

ax By a
aw aw aw

u. wZ)1du dv dwi where J x y.z is known as
(2.1-7) is often written as J - Y.Z d w e y i

the Jacobian of the functions x - x(u,v,w); y - y(u,v,w); z - z(u,v,w).

When the coordinate axes are mutually perpendicular at all points the
coordinates are said to be orthogonal. For a right-handed orthogonal
system

A A A A A A

U.v - u.W - v.W - 0

A A A A A A A A

u x v W v x w u ; w X u v

in which case

ds2  - hi du 2 + hi dv2 + hi dw2  (2.1-8)

ldSul - h 2 h3 Idv dwi (2.1-9)

d- - hlh2 h 3 jdu dv dwv (2.1-10)

The considerations of this section are best illustrated by reference to
the two most comonly employed systems of curvilinear coordinates, viz

4
cylindrical and spherical coordinates

4. For more complex systems of curvilinear coordinates see J.A. Stratton,
"Electromagnetic Theory", Sec. 1.18, McGraw-Hill, New York (1941).
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2.2 Cylindrical Coordinates

z

z

RV

Zi

0

Fig. 2.3

Let Q be the projection of the point P on the xy coordinate plane through
0 (Fig. 2.3). If pl is the length of OQ, and if 01 is the angle made by
OQ with the positive x axis when measuring right-handedly about the z
axis, and if z, is the distance QP, then (ol. 01, z1) are said to be the

(circular) cylindrical coordinates of the point P.

By stipulating that P1 > 0 and that 0 5 01 < 2w the coordinates of P are
5uniquely defined

P is seen to be the point of intersection of the level surfaces p - pi,

4 - 41, z - z 1 . The surface p - P, comprises a circular cylinder of

radius p, centred on the z axis. The surface * - 01 is a half-plane

whose edge is the z axis. It makes an angle 41 with OX. The surface

z - z1 is a plane normal to the z axis and at a distance z1 (measuring

in the positive z direction) from the xy plane through 0.

The coordinate curve defined by the p and z surfaces is a circle through
P centred on the z axis and normal to it. It is the curve traced out
when * alone varies, and is known as the * curve through P. It will be
seen that the p curve is RP produced, and the z zurve QP produced in both
directions.

5. Points on the z axis (p - 0) will be excluded from the following
analyses. The z axis is said to comprise a singular line.
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The coordinate axes through P are mutually perpendicular; cylindrical
A A &

coordinates are consequently orthogonal. The unit vectors p, t, z taken
in that order form a right-handed set.

The relations between rectangular Cartesian and cylindrical coordinates
may be written down by inspection.

x P pcos ; y - p sin4 ; z = z (2.2-1)

p - (x2+y2)i ; -- tan- 1 
*-- ; z - z (2.2-2)
x

In this representation each coordinate of one set has been expressed
entirely in terms of the coordinates of the other set (with the exception
of the common z coordinate).

The position vector from 0 is given by

r 6ix+jy+kz coof+jp sin + kz

hence
6

A

3 r• - cos 0 + • sin 0 - _p h ,
TP

-i p sin * + p p cos f - t h 2  (2.2-3)

A
3r - zh 3
az

whence

h - ; h 2 " p ; h 3 - 1 (2.2-4)

6. It should be particularly noted that when partial differentiation is
carried out with respect to a variable of one st, the remaining variables

Sof the same sat are held constant. Thus whereas I is the rate of change

hnof x with respect to p while y and z remain constat 2 in the rate of

ange of p with respect to x while y and z remain constant. The readily-

ewnostrated equality of and does not, therefore. constitute an

inconsistency.
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and

p - Tcos 0 + j sin 0

* - -isin 0 + cos j (2.2-5)

be -

A A

The mutually perpendicular nature of p, 0 and z is confirmed by the fact
that the scalar products, taken two at a time, are zero.

2.3 Spherical Coordinates

Z A

r
- < A

/

Fig. 2.4

Let Q be the projection of the point P on che xy plane through 0

(Fig. 2.4). If r1 is the length of OP and if 01 is the angle made by OP--w

with the positive z axis and if 01 is the angle made by OQ with the

positive x axis when measuring right-handedly about the z axis, then

(rl, 01, 41) are said to be the spherical polar coordinates of P. By

utipulating that rI > 0, 0 < < w. 0 5 01 2w the coordinates of P
7are uniquely defined7.

7. Points on the z axis (r - 0, or S - 0, w) will be excluded from the
following analyses.
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The coordinate surfaces through P are seen to be

(a) a sphere of radius rl centred upon 0

(b) a circular cone of half-angle 81 (r v - 81 if 8e > 21 whose axis

coincides with the z axis and whose vertex is at 0

(c) a half-plane whose edge is the z axis and whici makes an angle 01
with OX.

The coordinate curves are

(a) OP produced (r curve)

(b) a semi-circle of radius rI centred upon 0 and lying in the half-
plane 0 - 01 (8 curve)

(c) a circle of radius rl sin el normal to the z axis and passing
through P (0 curve).

The coordinates are clearly orthogonal; r, 8, 4 in that order are seen
to form a right-handed set.

For points beyond the z axis

x - r sin cosO ; y - r sin 8 sin ; z = r cos e (2.3-1)

r (x2+y2+z2)i ; e - cos- 1  z - tan-1Y (2.3-2)
(x2+y2+z2)• x

Further,

r . r sin e cos 0 + j r sin e sin 4 + k r cos 8

hence

7- sine cost +jsine sin0 +kcosO - r h,

3 A.
3 r r cos Cos $ + r cos e sin t - k r sin e - e h2  (2.3-3)

A
- -r sin 0 sin +j r sin coso = "h 3



118 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.2.4

whence
8

h, = I ; h 2 - r ; h 3  r sin 0 (2.3-4)

and

r = i sin e cos + j sin e sin o +k cos e

e = icos 0 cos 0 + j cos 8 sin 0 - k sin 6 (2.3-5)

A

S= -i sin 0 + j cos J
2.4 Line, Surface and Volume Integration in Cylindrical and Spherical

Coordinates

2.4a Line integration in cylindrical and spherical coordinates

It follows from (2.2-3) and (2.2-4) that the differential form of the
vector line element in cylindrical coordinates is given by

IA A A

or dr = p hldp + 0 h 2 do + z h 3 dz
Ior (2.4-1)

dr - p dp + 0 p dt +z dz

Hence

ds - (dp2+p2d,2+dz2)1 (2.4-2)

(2.4-2) also follows from substitution of (2.2-4) in (2.1-8).

The scalar line integral of a point function V along a curve r is
consequently given by

"V f V (dp2+p2d42+dz2) (2.4-3)

r r

For the purpose of computation this is replaced by

8. The metrical coefficients for cylindrical and spherical coordinates may
be derived quite simply by the use of (2.1-2) and an appeal to the
appropriate diagram. In more complicated systems the formal approach
developed above may be required.
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d ds ) 2dt) (dt IdtI (2.4-3(a))

when V and the coordinates of the curve can be expressed in terms of some
parameter t. Alternatively,

fv ds - f V _) + + ( Id[ (2.4-3(b))

r, r

when, for example, V, p and z are known functions of 0.

The corresponding expressions for the tangential line integral of F are

f F.dP - f (F d f+P +Fdzdz) (2.4-4)
r r

f F4dr - + FFd L" + Fz ! dt (2.4.4(a))I itE + dt zdtj
r r

[~dr - +p- + O F• L dO (2.4-4(b))

r r

Equations (2.4-3) to (2.4-4b) reduce to their plane polar equivalents
when the terms containing z are deleted.

In spherical coordinates

A A A

dr - r dr + 0 r de + 0 r sin e dt (2.4-5)

de - (dr 2 +r 2 de 2 +r 2 sin2e d62) 1 (2.4-6)

, The basic forms of I V ds and f1 .d are sern to be
r r

rV (dr 2 +r 2 de 2 +r 2 sin2
8 d,2)l (2.4-7)r!



120 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.2.4

/ (Frdr + rFede + r sin e Fodf) (2.4-8)

r

whence the alternative forms follow directly.

2.4b Surface integration in cylindrical, spherical, and general surface
curvilinear coordinates

The scalar area of a surface element which lies within a coordinate
surface and is bounded by coordinate curves may be found by substitution
of the appropriate coordinates ant metrical coefficients in equations
such as (2.1-9). For a cylindrical coordinate system this yields

IdSP I - pld dzl ; IdSof - Idp dzj ; IdS I - pldp dcj (2.4-9)

There is, therefore, no difficulty in setting up any required form of
integral when the surface of integration coincides with a coordinate
surface. When this is not the case, but one coordinate upon the surface
is a known function of the other two, we may proceed as follows.

z

z=zi+Az

d

- -j b

Fig. 2.5

Suppose that the equation of the surface of integration, S, takes the
form p - f(oz). Fig. 2.5 shows the part of the surface intercepted by
the coordinate planes * o 01p * - 1 + A, z - z 1 , z - z1 + ax, where A#

and Az are positive increments of 4 and z. The line ab is the
intersection of S with the surface a - z1, while ad is the intersection

of S with 4 - 41 . If the end point of r ip cos 0 + sin 0 +kz is

maintained within S, then
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drcos f - p sin 2+ i + p cos
do o

(The total derivative sign is used here to distinguish the operation from
Sin (2.2-3) where p. 9 and z are independent variables 9 .)

It will be seen from the figure that since A is the rate of change of r

with 0 while z remains constant, the vector A is given approximately by

-• At. Similarly,

dr - P cos + -Lsin $+
dz az az

-( (dý
and ad t z)

It follows that in the limit as at, Az+O the element of area intercepted
by the planes becomes

= d) do dzfj'140 Tf dz) 1

where the postive normal at the element makes an angle of less than 90*

with p.

On expanding the vector product and dropping the subscripts we obtain the
general form

d• " sin 4 + p coso) +i - cost +p sin ) -kp A Jd, dzj

or, from (2.2-5),

dSt Z] Idf dzl

The scalar magnitude of the surface element is

9. Since F is also a function of z the notation is not a happy one. But we
do not here consider the case in which # and a vary simultaneously.
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{2 + (~2+ P2 ( J2 dO dz(

and the scalar surface integrals are given by

F v dS - fT 2 + p2  IdO dzl (2.4-10)

S S

F.dS as igF -F, -!-pF - dO dzf (2.4-11)

S S

(2.4-11) represents the flux of F through S directed away from the z

axis.

Corresponding expressions obtain when the surface is defined by
0 = g(p,z) or by z - h(p,tt).

Surface integration in spherical coordinates may be carried out in a
similar manner.

The elements of area which lie within the coordinate surfaces and are
bounded by coordinate curves are seen to be

IdSr I - r 2 sin e id0 dal ; ldsl - r sin e ldr d0l IdSlI - r ldr del

(2.4-12)

When the surface of integration is not a coordinate surface but r is a
known function of (eo), the associated vector surface element is given

by

dS . dr Id8 d I

where the positive normal at the surface makes an angle of less than 90O
A

with T.

The surface integrals are then found to be

fs VdS ff v + iae n2 e + r2 sin2 el r Ide doI (2.4-13)

,ine-, i 0 F. r Ide dol (2.4-14)

f F-dS - ffSj sin 6-F sir
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(2.4-14) represents the flux of F through S directed away from the origin
of cooordinates.

Similar expressions hold when 0 is a known function of (r,0), or 0 is a
known function of (r, 8).

Equations (2.4-10, 11, 13, 14) may be shown to be particular
configurations of two scalar integrals which are based upon a parametric
description of the surface of integration.

In general, the set of equations

x = fl(C-,) Y = f2(E,4) z - f3(CC)

represents a surface, the parameters C and 4 being known as surface
curvilinear coordinates. Variation of E, with C held constant,
corresponds to movement over the surface along a E curve, while variation
of C, with C held constant, relates to motion along a ý curve. These
coordinate curves may or may not be orthogonal.

.A
If C and 4 are unit vectors, tangential to the E and C curves at each
point, then

a-i - A
iC- ht L - h C

where

ds• ds•

h - d- - and h; C
E dC n h dC

The vector element of area bounded by such curves is given by

-S - ' IdE dCI A h~h Ud dC

AA A A

where E, 4 and n form a right-handed set, n being the unit positive
normal at the surface element, whence the surface integral of V and the

normal surface integral of If are seen to be

f]V JX •[ Idt dCI and EFr . 5X jId, dCi (2.4-15)

S S

The connection between this treatment and that given previously in terms
of, say, spherical coordinates is made clear by a consideration of the
particular functional relationships:
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x - fl(C,0) - f(C,) sin E cos r

Y - f 2 (C,) - f(-,,) sin C sin r

z - f3(W.0) - f(C,¢) cos C

In this case

Cos C z ta yC (•¢ (x2+y2+z2)i
(x2+y2+z2)1 ; tan y

so that C and ; correspond with the 6 and 9 coordinates of the point
which they specify, and f(W,.) - r.

It follows that the spherical coordinate analysis is identical with that
based upon surface curvilinear coordinates when the Cartesian coordinates
of the surface are related to these parameters by the equations set out
above and 0 - C < w, 0 6 C < 21.

2.4c Volume integration in cylindrical and spherical coordinates

The magnitude of an element of volume, which is bounded by coordinate
surfaces, may be found from the substitution of (2.2-4) and (2.3-4) in
(2.1-10).

For cylindrical coordinates

di - p IdP dt dal

and for spherical coordinates

dT - r 2 sin e Idr de d01

The process of volume integration does not require that the shape of the
volume element be matched with that of the bounding surface of the

10
of the integration region , hence the complications of the previous
section, associated with the introduction of non-coordinate surfaces, do
not arise. The scalar integrals are simply

I Vd - fff V P JdP dO dzl (2.4-16)

10. See footnote to p. 50.
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and

V dT V r 2 sin 6 Idr de d'l (2.4-17)

In the vector integrals, F replaces V.

EXERCISES

2-1. Confirm equation (2.1-5) for a plane or warped coordinate surface. (See
Ex.1-27., p. 24).

2-2. Express the acceleration of a point in cylindrical coordinates.

A4 d2 (L#)2 [ + 2 d d,•] + A d2.
t - \dt/ J dt 2  dtd t dt

2-3. A conical helix is defined in cylindrical coordinates by

P - az , -= bz

where a and b are constants.

Find the length of the helix between z = 0 and z = z.

An.s: 2k [(a2+1 + z2) + sinh- (Ia2 )2s C z a2b2 b2  -a+)

2-4. Compute the value of the closed tangential line integral of o -
around the cardioid p - a(l-cos 9) by direct integration in plane polar
coordinates. Confirm this by applying Stokes's theorem.

Ans: 3wa 2

2-5. Determine the surface area of an ellipsoid of revolution defined by

+• -1f

where a and b are constants.

Aans: 2w&2 + 2b sin-l . for b > a

(bT)
211& + 2yb 1 &

t2 \2nh 7b2 - for a > b

.b2
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2-6. The axis of a cylinder of height h and radius a coincides with the z
axis of coordinates, while the lower edge of the cylinder lies in the xy

plane through the origin. A vector point function F is defined in
spherical coordinates at points beyond the origin by

2 cos eF -r- , Fe - , F -- 0
r r

Use (2.4-14) to determine the outward flux of F through the cylindrical
surface.

Ans: 2 (11 321

a (a+h2)3

2-7. Given that F - r/r 3 vhere r = ix + jy + kz, show that the flux of
through the surface of the ellipsoid of revolution

2• 2 Z2
+ aý- + -"T - I

is equal to 4r. Carry this out both in cylindrical and spherical
coordinates using (2.4-11) and (2.4-14), and notice how the choice of an
appropriate coordinate system simplifies the calculation.

It should be appreciated that for this particular vector field the
surface integral is independent of the shape of the enclosing surface -
See Sec. 1.14.

2-8. A surface defined by $ - f(r,e) is intercepted by the coordinate
surfaces r - r, r - r + dr, 8 - e, e - 8 + de. Derive an expression for
the element of area so intercepted when the positive sense of the normal

A

at the surface makes an angle of less than 90° with 9, and determine the

values of the projections of this element upon planes normal to r, 8 and
A

4. Confirm these values by working directly from a diagram, and show

why dS and dS are negative when A and-K are positive.
r 8 e 8r r e w -a

Ana: dS - -r2 sin 8 n Idr del ; dS= -r sin 8 2 ldr del ; dS - r ldr del
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2-9. A sphere of radius a is centred upon a point whose Cartesian coordinates

are (l,m,n). Write down the equation of the sphere in terms of two
parameters, g and 4, determine the magnitude of the associated element

of area, and integrate this to obtain the surface area of the sphere.

Ans: x - a sin • cos C + I

y - a sin • sin C + m

z - a cos + n

dS = a 2 sin C IdC dcf

f dS - 4wa
2

2-10. A torus is generated by rotating a circle of radius a about the z axis
in such a way that its plane contains the axis at all times. The circle
initially lies in the xz plane with its centre at the point x - R,
z - Z, where R > a.

Set up parametric equations for the surface of the torus, determine the
magnitude of the element of area, and integrate to find the total
surface area.

Anis: x - (R + a cos C) cos C

y - (R + a cos C) sin

z - a sin E + Z

dS - a(R + a cos E)IdC d•I

I dS - 4w2 a R

2-11. Find the area enclosed by the ellipse a +b - I by making use of the

parametric equations11

x - a cos ; y - b sin

11. The use of common symbols for the parameters of the different
exercises does not imply that they are related.
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[Hint: The equations x -a a cos C and y - a b sin c, where 0 < a 1 1,
define a system of concentric ellipses of which the outermost is the

ellipse under consideration. Bearing in mind that tan c - i tan 0,

where 0 is the angle of plane polar coordinates, show that is

tangential to the typical ellipse while -- is collnear_ with r.
C, i- r dor

Determine the value of the element of area defined by dr a)

and show that the area enclosed by the ellipse is given by
2w 1If -r x d�d dC. Evaluate this.]

0 0

Ans: weab

x 2 2
2-12. The parametric equations of the ellipsoid a + c2  are

x - a sin C cos ; y - b sin g sin ; z - c cosC

Find the volume enclosed by the ellipsoid by utilising a three-
dimensional equivalent of the procedure employed in the previous
exercise.

S~4
Ans: -4abc

3

2.5 Grad V, Curl F, Div F and V2 V in Orthogonal Curvilinear Coordinates

Let Atr represent a small displacement at a point where u, v and w have
continuous first derivatives. Then

I. Ar.Vu - Au ; Ar.Vv ; Av ; Ar.Vw - Aw

where Au, Av and Aw are the increments of u, v and w corresponding to the

displacement Ar.

It follows that

Au1Vu ; - . Vv - I A . Vw =

provided that Au a ; Av * ; Aw X 0

In particular, if Ar is directed along the u, v and w coordinate axes in

turn and limits are taken as A;*O, the above approximations reduce to

r Vu- 1 ; . Vv - 1 , • Vw - 1 (2.5-1)
a•u " v 3w
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A A A

ie hjU . Vu - I ; h2v Vv - 1 ; h3w Vw - 1 (2.5-2)

These results hold whether or not the coordinate system is orthogonal.
Some consideration will show that, for the particular case of3r _r 3r
orthogonality, ý-L and Vu, ir and Vv, a-r and Vw have the same directions
(and senses) taken in pairs, whence it follows from (2.5-2) that

A A A

Vu - !L Vv . - wW.ý
hl h2 h 3  (2.5-3)

2.5a Gradient in orthogonal curvilinear coordinates

Let V be a scalar point function having continuous first derivatives
throughout a region of space which includes the curvilinear volume
element shown in Fig. 2.2. Then it follows that

V(Q) - V(P) - V(uo+Au,vo+Av,Wo+AW) - V(UoVow)

or

AV V(u 0 +AuV 0 +Avw+AW) - V(uov0+Av,wo+AW)

"+ V(uov 0+Av,w+&w) - V(Uv o', +Aw)

"+ V(uoVow0+AW) - V(uoVowo)

If we relate the component parts of this expression to motion along the u
curve from S to Q, along the v curve from R to S and along the w curve
from P to R, then we may replace the expression by

AV . ý Au + I I AV + / ) Aw (2.5-4)~ /u Kaw,
V+Av 0 0

o viv
WO+A w +Aw w1

where u < u' < u + Au ; v V' V< v+ AV ; w < w' < w + Aw

The anlaysis to this point is virtually identical with that presented in
Sec. 1.2 for rectangular Cartesian coordinates, although in the present
instance the partial derivatives represent limits associated with
non-rectilinear motion.

Suppose now that Q has been so chosen as to have the same y and z
coordinates as P, and let x(Q) - x(P) - Ax. On dividing (2.5-4) by Ax
and taking limits as Ax*O we obtain

auax av x aw axp
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whence, in general,

av 3V au + aV v +V aw

Tx Tu x av ax aw ax

Similarly 3 V au + - V v +•_j3y ~u Ty avgy aw ay

and 3- " au BV + v +v LV3w

On multiplying these equations respectively by i. j and k, and adding, we
find that

grad V -•E Vu + L Vv + -Vw (2.5-6)

This is the general curvilinear expression for gradient.

For orthogonal coordinates it follows from (2.5-3) and (2.5-6) that

A A A
u V v 3V w 3V

grad V - u 3_ + V - + K- 3- (2.5-7)
h, 3u h2 3v h3 

3w(25)

2.5b Curl in orthogonal curvilinear coordinates

Since

A A A

S= uF +vF +wF
u v w

it follows from (1.16-1) and (1.16-3) that

curl - Fu curl u + grad Fu X u

+ F curl v + grad F x v (2.5-8)v V

+ Fw curl w + &rad Fw x w

To evaluate curl u for orthogonal coordinates we apply (2.5-3) to the
identity curl grad u -EO.

A

Since curl grad u - curl u
hl

Scurl u + grad •1x u "0
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or

curl u - -hl grad h, x u

But from (2.5-7)

1 [A~ ah h h
gra h, h~ au h2 3vh 3 T'hj

whence

A -~ ah1  ah1
curl u = - - -

h 3 h1 aw hlh 2 av

A .1 ah2  A ah 2Similarly curl v h - - (2.5-9)
h ~jh2 au h2h3 8w2.-9

A A 3h 3  - 3 3h3
and curl w h2 h3  v vh3h, Du

On substituting (2.5-9) in (2.5-8), expanding grad F etc in accordanceu

with (2.5-7) and collecting terms, we get

A

curl u - (h 3 F ( )h2 h 3 C3 -w (h 2 F v

+ (hIFu) a-- (h 3 Fw (2.5-10)

A

+ -; (h 2 Fv) L L (hjF

hjh2 171; V av ]

This may be written in determinantal form:

u v w
h 2 h 3  h 3hl hjh 2

curl L (2.5-11)

hjF u h2Fv h3FVI•• •V•- 251l
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2.5c Divergence in orthogonal curvilinear coordinates

From (1.16-2) and (1.16-4)

A A A

divF div(u Fu +vF +wF)

A A
F u div u + grad F . u

(2.5-12)
A A

+ F div v + grad F . vv v

A A
+ F div v + grad F .vw

Since the coordinates are orthogonal

A A A

U - V X V

hence from (1.16-7)

_A A A A A

div u v • curl v - v . curl w

whence, by (2.5-9),

1 h2  ah3
div u u + h h u

hjh 2 Du h3 h1 au

ie- 1h u (h 2 h 3 )Sle iv ,-hlh2h3 3u

Similarly div v h-h 2 h3 h . (h 3 hl) (2.5-13)

and div w fhth 2 h3  (blb 2 )

On substituting (2.5-13) in (2.5-12) and expanding grad Fu etc in

accordance with (2.5-6) and collecting terms, we get

hlh -h+ ( u L (h3hrF) 1- (hjh2F (2.5-14)dv b1 hbh3 ýau- (h2h3F) a 3 1 v aw iWý5
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2.5d V2 V in orthogonal curvilinear coordinates

Since V2 V = div grad V it follows from (2.5-7) and (2.5-14) that

v ~ ~ Tu .- hý~h hTu E + +- -• •kb (2.5-15)
- ~~v hh vhlh2h3 Nu h1  3u 8 2  Dv) 3w ( h3  (2.5-15

2.6 Grad V, Curl F, Div F and V2 V in Cylindrical and Spherical Coordinates

These expressions are readily obtained by substitution of the appropriate
values of the metrical coefficients in the formulae established above.

For cylindrical coordinates

u = P ; v - ; w z

h, 1 ; h 2  = p ; h 3  - 1

hence

-3 "13 "3

grad V - p + + - (2.6-1)

cutF -A 13F aF A3 3

P 59 3• 5 3z -- -- "+ ( 0 Fz) - (2.6-2)

div F = • • (pFp) +-P - + -z (2.6-3)

V2V ay= 1 (2V + a2V (2.6-4)

For spherical coordinates

u - r ; v -8 ; w -

h - I ; h2  = r ; h 3  r sin

hence

A -V t-IV 1 3V (2.6-5
grad V - r + 0 r 5 + f (2.6-5)

II
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curl F - r sln--- {a (F, sin 0) -

+ 11f 1 aF r a (2661e r sii e W ar 7(2.6-6)

+ (rFe-IF r

div F a 1 • (r 2 Fr) + 1 n-- (F sin 0) + 1 i F 0 (2.6-7)

+ r sine sin e + r sinS e (6-

v2v = - (r2 3V. + na (-sin s n2 e s (2.6-8)

2.7 Derivation of Grad V, Div F and Curl F in Cylindrical Coordinates by
Transformation of Axes

Although the substitution of appropriate metrical coefficients in the
general cur,'linear expressions leads rapidly to the formulation of grad,
div and curl in specific coordinate systems, there are several other
methods whereby the formulae may be derived and which provide a deeper
insight into the relationships existing within a given system. Two such
methods will now be considered.

(1) Reference to the equations comprising (2.5-5) of which the first
is

_Ev = 1-V a- v + Vv + v ý-
ax au ax av ax aw-ax

reveals that when the analytical relationships between u, v, w
"and x, y, z are known, it is possible to express the partial

av aV and av
derivatives 4, Uy a wholly in terms of curvilinear

coordinates. If, in addition, the unit vectors 1, j, k can be

expressed in terms of u, v. w, it is seen that the curvilinear

form of grad V may be developed. Further, since Fx, Fy and Fz

may be substituted for V, the exprcssion of each of these
rectangular components as the sum of curvilinear components

enables us to derive the curvilinear forms of div F and curl F as
well.

In the case of a cylindrical system

p - (x2+y) 1  ; 9 = tan-s ; z - z
x
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hence

3lp o x osin - 0
ax p ay p az

: (2.7-1)

_n _ 1 as 1 . 0
ax p ay p oz

Further, from Fig. 2.3

F - F cos I - F. sin S

(2.7-2)

Fy F sin f +F cos 4D

Then from (2.5-5)
aV=Vv ai

ax V acos 0 - sin5

MV . V sin 0 + aV i Cos 0 (2.7-3)
ay ap as p

av . av
az az

hence

grad V - LY cos 0 + sin 0) + 1 (-i sin + jcos o) + kV
ap P as 3z

whence, from (2.2-5),

A V - 1 av ý. V
grad V - pa + ia 0 - +

Upon substituting F for V in the first line of (2.7-3) we get

8Fx aFx FFx
-a ' " • Cos f - - sin

t
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3 (3F 3Fo-~si~
--- - \-Cos -L! sin 4D cost

( /3F BF F ' 1
- ( cF - FO sin - L! sin 0 - Ft Cos 0-- sinf

p 34 p

Similarly,

BF F 3Ft
__y - -sin + _cos 0 sinOay \a 8

+ aF sin0 + F cosf+ aFcosf- F sin 0) LCos0+ at p cot 0 p o F o

so that

div F - - (pF) +1 F aF1
p a- p p 3z

In like manner it may be shown that

3F. (' {QF i2 sin 0 + F.) 4*Cost
ay az " p p 8- --0 - z

Similarly

3F DF 1(aF 3F B D
az x x z f(!3F at a i (a3 p )Io
-- 1 - -in0+ :- 2) +o 0}

ax ay - p p

whence

BE F
curl - ( coo + T sin 0)! -I _-0

+ (- in 0 + co o 0)( _p _ B- )

(EF 0 - 1 3F

50 p BO8
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or, from (2.2-5),

curly - 0- aF) +z - -) + (PF) )F

cr p ___i (; --

(2) In view of the invariance of grad, div and curl with respect to
choice of rectangular axes, we may write

grad V -• Iax y' 3z'

div - + y + , - (2.7-4)

"url F ay@ + -, + T aF

(3l• '\y, \j•)i 'az 8-x'- a-7'-

where P', P', k' and x', y', z' refer to a right-handed system of
A A A

fixed rectangular axes which coincide with p, 0, z at the point
where the transformation is to be effected.

It will be seen from Fig. 2.3 that if the systems are coincident

at P, then movement in the 1' or K' directions at P leaves the
A A A

orientation of p, 0 and z unaltered; in addition, Ax' - Ap and
az' - Az.

Hence

aV IV a a F1 - FF, a aF,; F, = aF l
ax, a p ' r I p ' a x' ap ' x' ap ( 7

(2.7-5)

IV IV Fx, I F, 0a, aFI, aFF z
z' az ; az z' az ' aF- "z )

Fig. 2.6 is drawn in a plane through P normal to the z axis. The

cylindrical coordinates of P are p1, 91, 1, and those of Q, the

typical point on the y' axis through P, are p, 0, Z1 . PQ " y'.

Because both p and 0 vary with y'

ay' ra- ay' at ay,

A.v •~
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Y

Fig. 2.6

But p2 - p• + y',2 whence - si('41, ' - -

and P - " taj- -, wn -oP4

so that for any point on the y' axis through P

I (€-4i) + av 0( (2.7-6)

Since * - 01- 0 at P it follows2 that

Further,

x,- FD corn (*-4i) -F, sin (9-4k) J (2.7-8)

out -pF sin (Y4,2 ) + 2P co s ( 0-41)

12. The reader who considers that unnecessary effort has been expended in

establishins a result fhich is intuitively obvious should exercise Paution

when approaching hisher-order derivatives. (See equation (2.10-().)

/ý .. . I -- (2.7-7)
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On substituting F and Fy, for V in (2.7-6) and putting

S(t-t)= 0 after differentiation, we find that

/3 3-F (....,Lý a F .---- K
p P1 (at t) ' YP Pi P \P(

(2.7-9)

Equations (2.7-7) and (2.7-9) with subscripts deleted, together
with (2.7-5), furnish the curvilinear equivalents of all
rectangular partial derivatives. Substitution in (2.7-4), with

A A A
.' j, kv replaced by p, t, z, yields the required cylindrical
forms of grad, div and curl.

2.8 Derivation of Grad V, Div F and Curl F in Spherical Coordinates by
Transformation of Axes

(1) The background relationships required for the first type of
transformation are derived from (2.3-1) and (2.3-2).

Since

x - r sin 6 coso ; y r sin 6 sin9 ; z - r cos 6 (2.3-1)

r (x2+y2+z2)1 8 cos-1  z - tan Y (2.3-2)
(x2+y2+z2)i a

It follows that

Br Br Br-- sin 6 cos 0 ; y sin 8 sin9 ; -- cos8Wx ay az

cose• cos t T - cos 8 sin9 ; L - - sin e (2.8-1)5-x 7 by r az r

3 I s Isin 3 0 Icos 9 39
Bx re insien Z 0

From Fig. 2.4

Fx - Fr sin e cos t + Fe cos e cos e - F sin t

F y Fr sin 6 sin 4 + Fe coso sin 4 + Ff cos 0 (2.8-2)

F z F coso - F sin J
z r

A A A

The relationships between r, 8, 0 and i, J, k have already been
expressed in (2.3-5).
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The detailed treatment will not be pursued here. Is is formally
analogous to that developed for cylindrical coordinates and is
straightforward, but extremely tedious.

(2) The second type of transformation, involving a set of fixed
A A A

rectangular axes V. j', k' coincident with r, e, 0 at P, is
carried out as follows.

.A A a

It will be seen from Fig. 2.4 that the r, e and * axes maintain

their orientation in space with movement in the V' direction
at P, so that the following relationships may be written down
imediately.

___ V a x ..x r eFZ Et (2.8-3)
ax' -r ax' ar 5 ax' ar ' x ; x' ar

Movement in the I' direction at P, ie along the y' axis, involves
variation of both r and e. This is shown in Fig. 2.7 which is
drawn in the plane 4 - €1, the coordinates of P being r1, 8 ,. 61

and those of Q - the typical point on the y' axis through P -
being r, e, #1. PQ - y'.

z/7.,

rl Q r

e r j

00

Fig. 2.7

Proceeding as in the case of cylindrical coordinates we may show
that

V- -L sin (e-i) +avCo2(8
•y o ar 

ae r ,
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whence

(vY) P 1 (a!) (2.8-4)

Also

Fx, - F r cos (e-e 1) - Fe sin (6-ei)

Fy, - F sin (e-e 1 ) + Fe cos (e-e 1 )

Fz, - F0

whence

aFF IF Fe)~F 8  (3F,ý F"F,

)8y yp " , r -- p, r- p p

(2.8-5)

(r

0

Fig. 2.8

It will be seen from Fig. 2.8 that movement in k' direction at P,
ie along the z' axis, is accompanied by variation of each
curvilinear coordinate, hence we must write

as, I :3' D8 3:' as 0:'

Iv • i•_ • L • ._
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On taking the coordinates of Q as r, 6, t and putting PQ - z' it

follows from the trigonometry of the figure that

ar _ __ z'r 1  cos 8e cos
2 (t-$ 1 )

57 r ; ' " r
3 

sin 0 7z r, sin @I

whence

(_ r 1 s in _ (2.8-6)ýaz'e r, sin 81 \at/p

A

••~k'Q

Q
P Zf

S
T

U

x

Fig. 2.9

Fig. 2.9 is drawn in the plane through P normal to the z axis. It
A

contains the unit vectors t and k' but no other. The remaining arrows of
A A

the figure show the directions of the vector projections of r, i', 0 and

1' in this plane.

To derive curvilinear expressions for Fx v,, and Fz, at Q we may

resolve Fr and F0 into a vertical component (perpendicular to the plane

of the figure) and a horizontal component along QS. The latter component

together with F, may be replaced by horizontal components in the P' and

QT directions, where QT is parallel to PU.

The 1' vector at P makes an anglej- - 81 with PU, hence this is the angle

between QT and?'. The component along QT, together with the vertical

component at Q, may be resolved accordingly along I' and 3'. We find
that
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F - (Fr sin 8 + F coo 6) cos("-4) sin 61 - F5 sin(#-#I) sin 81

+ (F coo e - F sin e) cog 01

Fy, - (Fr sin e + Fe cog 8) cos(#-tI) cog 8a - F sin(O-41 ) cos 01

- (Fr cos e - F6 sin e) sin el

Fz, - (Fr sin 8 + F6 cog 8) sin(O-41 ) + F0 cos(O- 1 )

Substitution of these spherical forms of F,,, Fy, and FZ, for V in
(2.8-6) yields

/3F' 
js, ne r_ F si 61.

(\3aF - -rin F' Co (2.8-7)

/-F ,> f7 (1 a + F sin 8 + F cos e
Ka' /p- tsin e as - r8

The required spherical forms of grad, div and curl are then obtained by
deleting the subscripts and substituting (2.8-3) to (2.8-7) in (2.7-4)

A A A

with I', j', k' replaced by r, e, 4.

EXERCISES

2-13. If u, v, w are general curvilinear coordinates, show that for all points
at which the component factors are defined

a-•. Vv .21 W •. ý_ u . U - .v Vw V ., - Ar. Vw - 0
aua v av aw aw

2-14. Derive V2 V + + + in cylindrical coordinates by substituting
ax ay at,

(2.7-1) in (2.2-5) with u - p, v - 4, w - z, and by differentiating a
second time with respect to x, y and z.

2-15. By substituting Fx, Fy and Fz for V in (2.5-5), show that in general

curvilinear coordinates

div F V + F 4. F

au + v a.w

-F BF al

curl F -Vu x + Vv xiv+ Vw xi.
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2-16. It follows from (2.5-6) that, in general curvilinear coordinates,

VV - Vu H + Vv Uvt. Vw -V

auv -av -a
where VV i- + + V - V(u,vw))ax 3y 3:

hence, for operation upon a scalar field,

Vu 3-+ v T w x y

Show from the results of the previous exercise that this continues to
hold for operations upon a vector field.

2-17. Use the results of Ex.2-15. to show that, in the case of orthogonal

coordinates, div V and curl F may be expressed as three-line expansions
whose first lines are respectively

3F &
1 uu 3V a3 F 3 + wF
W, au hl Liu-u u v u w

and

- A aF +3FF +• 1v Fv + iu w] + --
CaFu u u wa hl 3u h, 3u

Determine the values of the partial derivatives of the unit vectors for
cylindrical and spherical coordinates by an appeal to appropriate
diagrams or analytical functions (eg (2.3-5)), and so express divergence
and curl in these coordinates.

Ans: In cylindrical coordinates u - P, v - *, w - z. All partial
derivatives are zero except

_tA AA

at T P

In spherical coordinates u - r, v - e, w - *. All partial
derivatives are zero except

A A

ar a 36as - 6 ; --e -r

A A A A

t*sin6 e 0 coo6 0 at -(r sin 0+O6cos 0)
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2-18. Substitution in (2.6-4) reveals that, for cylindrical coordinates and
finite values of p,

72t - V2 z = VZ in p - 0

It follows that grad o, grad z and grad In p may be expressed at points
beyond the z axis as the curls of certain vector point functions.

Determine some of these functions by expressing the gradients in
cylindrical coordinates, and by making an appropriate choice of FP, F
and F in (2.6-2).

z

AA
Ans: grad 0 - curl p z/p = - curl z In p

At A
grad z - curl t p/ 2 

= - curl p pf
A A

grad in 0  = curlz = - curl 0 zip

2-19. Given that G - (kxr)/r 3 where ki is the unit vector in the positive z

direction, r is the position vector from the origin of coordinates and

r = InI, express G in cylindrical coordinates and determine two

expressions for F which satisfy the relationship G - curl F. Compare

the result of Ex.1-48, p. 64.

A A

Ans: G 0 ; F p__orF__ z
(p2+z2)3/2 p(p2+z2) o (p2+z2)i r

2-20. It follows from the expression for V2 V in spherical coordinates (2.6-8)

that div grad 1 is zero at all points other than the origin, where it is
r1undefined. (V2  is also undefined along the axis, sin e - 0, but this

axis may be chosen arbitrarily for a given origin.) Express
iA

grad - as curl F, where T has a 0 component only, and by

transforming this into rectangular coordinates derive an alternative
solution of Ex.1-45., p. 64. Notice the greater ease of interpretion of
the polar expression.

A

Arts: - cot_ zy + --I X + 1 0 beyond the z axis.r (x 2 +y 2 )r (x 2 +y 2 )r (sin 6 0)

2-21. If

A A A A A A

ru V. ... . ..-. I V ;;I.
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show that

a.dr = h 1du b.dr - h 2 dv c.dr = h 3 dw

and hence derive the general curvilinear forms of grad, div and curl as
shown below.

grad V - V +b V + V"h, 3u• h2 3 v h 3 w

div •- F + b'L + B'
h, 3u h2 3v h3 '3w

curl F a xF + b xF + x3F
h1, u h 2 av h3 Bw

2-22. Derive the general relationship

a A

3u T - v (hiu)

by applying the identity 7 dr E 0 to the closed curve lying within a w

coordinate surface and bounded by the coordinate lines u, u + du, v,
v + dv.

Note the corresponding equalities

a - a (h 2^ (hl a a
3V(haw 2v w- (hu) (h3w)

A A A
2-23. For orthogonal curvilinear coordinates in Ex.2-21., a . u, b - v, c - w.

Transform the resulting expressions for div F and curl F, into (2.5-14)
and (2.5-10) respectively.

(Hint: Make use of the relationships derived by expanding the

equalities in Ex.2-22. and forming scalar products with u, v or w as
required.]
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2-24. By writing (F.v) and U in spherical coordinates show that (F.V)G

S3Gr +FS "Gr FG1 F 3G` F"GO}
- r Fr-+-- ae r r sr

-1 IF e F. r Fe 'Go F 'G0 FG0 cose

r ar r r 36 rsin 0 34 rsin

J 3G G F G FG F %0 FGe cos.
+ Fejr!' -A A I F~ + * ~ +ar r He r r sin e i r sini J

2.9 Derivation of Curl F and Div F in Orthogonal Curvilinear Coordinates via
Line and Surface Integration

2.9a Derivation of curl T

Fig. 2.10 represents a curvilinear parallelepiped13 formed by the
coordinate surfaces u = uo, u - uI, v = v v - V1 , w - Wo, w - w1 .

Fis a vector point function which, together with its first derivatives,
is continuous throughout a region of space which includes the
parallelepiped.

To determine the tangential line integral of F around the closed contour
PCDEP, we note that, in virtue of the orthogonal nature of the

A A
coordinates, u and w are normal to PC and DE at every point of these

_A A,
curves, and that u and v and similarly normal to CD and EP.

Consequently,

i ~dr f Fdrv + f Fdr w+ / Fvdrv f Ywdrw

PCDEP PC CD DE EP

Suppose that the parallelepiped is divided by closely-spaced u, v and w
surfaces. The v and w surfaces intersect the face PCDE in a set of
curvilinear quadrilaterals. Those quadrilaterals lying between the J-Ith
and jth v surfaces (which cut PCDE in aa' and bb') are shown in the
figure. The typical quadrilateral aBVy lies between the k-lth and kth w
surfaces (which cut PCDE in cc' and dd'). The coordinate spacing between
aa' and bb' is Avj; that between cc' and dd' is Awk.

13. Perhaps 'curvilinear hexahedron' would be a more appropriate
description, since it is supposed that opposite faces may be unequal.
However, the meaning is clear.

j L
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E

/dL- 'Wk 7 I

uliw

1- ........

(h2FV b Avb ..... /uovvwo

Gj

Fig. 2.10

The contribution of the line elements ab and a'b' to the integral over PC
and DE is given approximately by

(h2F v)b AVj - (h2Fv)bt AVj

A negative sign precedes the second term because Av is taken as

intrinsically positive, but the associated vector element, Ar, points in

the negative v direction, ie tovards decreasing values of v.

The mean-value theorem permits of the replacement of this expression by

p

-AVjZ (Lýw(h2Fv))Jk Awk
k-I

where the subscript Jk' indicates that the derimative is to be evaluated
at a point between $ and y in the element shown. In this notation the
zeroth w surface is PGBC and the pth is EFJD.

The corresponding approximation for the sum of the line integrals over PC
and DE therefore becomes
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m p

AvZ j \ ( (h 2 Fv Awk
IL aw vý Jk' k

J-1 k-l

where the zeroth v surface is PEFG and the mth is CDJH.

If AS jk represents the scalar area of the typical surface element and

(h2h3)jk denotes the value of the product h2 h 3 at some particular point

of the element, then it follows from the considerations of Sec. 2.1 that

(h 2 h 3 )jk AvjAwk - ASjk + t jk

where (cjk/ASjk)*O as Avj, AWk÷O

The above summation may therefore be written in the form

m p

- Z Z ~ ( (h2 y) (AsjkEk
J-1 k-I

If, now, limits are taken as Av , Awk0 and m, p.-, we immediately arrive
at the relationship

Fvdr + F dr - - 1 (h2F dS

vv v v v h2h3 aw 2 v
PC DE PCDE

A similar analysis shows that

F drff Fdr -+ f 3L (h 3F) dSwdw + fwdrw h2h3 av

CD EP PCDE

On combining these equations we get

7.dr f 1 ý- - (h3Fw) - (h2F) dS
PhDEPaw Pv

PCDEP PCDE
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This is the orthogonal curvilinear equivalent of Stokes's theorem in two
14dimensions for a coordinate surface

Since

F-dr " f (curl F)n dS

PCDEP PCDE

then

(curl F)ndS f h-- -- (h 3 F) - •- (h 2 Fv) dS

PCDE PCDE

Now let ul*uo, vy÷vo, WW-.Pw. In view of the continuity of the

integrands, it follows from the mean-value theorem for integrals that

((curl F)n)P = ((curl F))P = h (h 3 F) - (hFvn P P av aw v)) P

This is in agreement with equation (2.5-10).

The remaining components of curl F are found by equivalent subdivision of
the v and w surfaces through P.

2.9b Derivation of div F

Fig. 2.11 is a further view of the curvilinear parallelepiped of

Fig. 2.10. As in the previous analysis, F and its first derivatives are
continuous throughout a region of space which includes the
parallelepiped.

14. For a surface described by the orthogonal surface curvilinear
coordinates • and C, the corresponding relationship is

F.dr - f 1 (hF)

r S h C ( h ~ hOd
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note hOVfWh

110VFig. 2.11W

A

and w are tangential.

Hence

f F.dS + f F.d$ FudSu

Su

PCDE GHJF PCDE GHF

The enclosure formed by the j-lth and ith v surfaces together with the
ToIth and kth w surfaces is shown the figure. his cuts the face GHJF
in the curvilinear quadrilateral •i'0'y'8'. The enclosure is intersected
by u coordinate surfaces, the tyical volume element so formed lying
between the i-lth and ith u surfaces and being desigated Aijk. The

coordinate spacing between the i-lth and ith u surfaces is wui.

The contribution of the elementary quadrilaterals aBy6 and *'01y's, to

the normal surface integral of F over the faces PCDE and GRJF is given
approximately by

(h2h3Fu)ye AvJAwk - (h2h3Fu)y AvJAwk

i
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A negative sign precedes the second term because the positive normal over
PCDE, being directed outwards from the parallelepiped, points in the

A
negative u direction, and so makes dS negative.u

This expression may be replaced by

n

Avj wk Z (• (h 2 h3 Fu))i'jk Aui
i ai

where the subscript i'jk indicates that the derivative is to be evaluated
on yy' between the i-lIth and ith u surface.

In this notation the zeroth u surface is PCDE and the nth is GHJF.

The corresponding approximation for the sum of the surface integrals over
PCDE and GHJF therefore becomes

m p n

Z ý vAw 7 kZ (h2.h3Fu)) ij ui'J
J-1 k-I i-l

If (hlh2h3)ijk denotes the value of the product hlh 2 h 3 at some particular

point of the element ATijk, and if the volume of this element is also

represented by ATijk, then

(hlh2h3)ijk AuiAvjAwk - ATijk + cijk

where (cijk/ATijk)10 as Aui, Avj, AWk+O.

The above summation may therefore be written as

Z Z p(I hh-h3)ijk ( (h 2 h 3 u)) i'jk k ijk+'iJk

i-I J-I k-I

If, now, limits are taken as Aui, Avi, hw, 0 and n, m, p.m, we see at
once that

I dS+ f f (h2h3Fu) dh
u + uu hlh 2 h 3 3u h

PCDE GHJF

The same system of subdivision may be used to determine the remaining
surface integrals. It is found that the total surface integral is given
by
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Fhh3 )a +2 (h3hjF ) + 1- (hh2 dTF.d hh 2 h3 L[u (h 2 h 3 Fu) + v w

S T

This is the orthogonal curvilinear form of the divergence theorem.

Since

f T.d4 - fdivTdT
S T

then

divFdr - f (h 2 h 3 F) + L- (h 3 hlFv) + L (hlh 2 F dT
jjhlh 2h3 (3u u av v w w)

T T

By invoking the mean-value theorem for integrals and taking limits as
ujUo, Vl*Vo, wlw 0 we see that

(div F)p ( )+ I - (h3hjF) + (hL hFh

(i) ,= (h ' • (h 2 h 3 Fu) + " + • p
WIhh - u av v 3w F

This is in agreement with (2.5-14).

2.10 V2 F in General Orthogonal, Cylindrical and Spherical Coordinates

It was pointed out in Sec. 1.18 that it is possible to derive general or

specific curvilinear expressions for V27 by substitution of appropriate
curvilinear forms of grad, curl and div in the relationship

V2 F - grad div F - curl curl F (1.18-5)

Before proceeding with this, however, an example will be given of a
direct transformation from the basic Cartesian form to the curvilinear.
This will be carried out for the particular case of cylindrical
coordinates.

Since V2  is invariant with respect to choice of rectangular axes,
equation (1.18-3) may be replaced by

V2 _F - !'V' 2 Fx, + i'Vt
2Fy, + k'V' 2 Fz, (2.10-1)

A A A

where P', j, k are fixed rectangular unit axes coincident with P, *, 2
at the point P(p 1 ,4 1 ,zl) where the transformation is to be made.
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Then

(V2 7F)p P 1 \ ax ,2 a 1y 2 + az ,2 J p

A /32F , 3 2F , 92F ,\

+ Z1 ý3x' 2  +- y' 2  + 3 ,12 p

SThe considerations leading to equation (2.7-5) allow us, in addition, to
- write down

32F x 2F 0 aF a2F 3 2 Fe 32

(2.10-3)
-2F' 2F (2F' 2 32F7 2

,lz K z2 + 3 +z' 2  z

The derivatives with respect to y' remain to be transformed.

It follows from equation (2.7-6) that

327 327 si( P2127 2

so that

But

whence

L 24 a 5F O 7-3T2 } (2.10-4)

Upon substituting the cylirtdrtcal forms Ft x, Fy, and b, for V in

equation (2.10-4) in accordance with equation (2.7-8) it is found that
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2P, + -P 7 _ F -2 (2.10-5)

La2 F, 1 F 1 32F, a Fi

y 4) _ F - + 2 . 2  (2.10-6)

____ P 1 1 a{^2 Ij~ + L a32F (2.10-7)
la'' p 1p ap P1 ?

Substitution of equations (2.10-5) to (2.10-7) (with subscripts deleted)
and equation (2.10-3) in equation (2.10-2) then yields

V A 1a2F IaF 1  a2F 2F F 2 F•0-

(2. 0-!) 1 euv 
a2F FR 

to

(2108 i eu2ln (2.10-t)

A f 2 F 2 F a20 2 F 01I
V24 Z I 2 1FV( z V2(

Comparison of equations (2.10-9) and (2.10-F) reveals that the semplicity
of the basic Cartes(an expansion is retained only for the z component of

cylindrical coordinates, ie
,P V2(F ) ; =--) V2 (F0 ) s (vaF)z = V2 (F )

(2.10-10)

•: To derive the general orthogonal curvilinear form of 72j we will adopt
Sthe method cited at the beginning of this section. This requires theubstitution of equations (2.5-7), (2.510-1) als tha th 4) in

quation (1.18-5). The working is strainhtforward and leads to the
following expressions.

(vi 2F) ; (7)Lv( ~ ) - V(
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(V U 1 u hlh2 h" u (h 2 h3 FF) + L- (h3hjF) + L (hjh2Fw

h 2 h3- hjh 2  3U( (h 2 F ) - • (hlFu) (2.10-11)

- a h2 (L (hFu - (h3F

3V2 F h h aw f au ./ a I

L - L i ( (h 2 h 3 Fu) + L (h3hjF (hlh2F1v au hvlhhF)} 1

I h (h 3 Fw) - •w (h 2 F) (2.10-12)

a h{ (L (h 2 F) -L (hIFu))

(V2 F)w - fa 1 IL (h2h3F + L (h3hjF) + a h

h3 aw hlhh2 h3 kau 23u av (3lv) + h1 W)

- h {h--• h( (hlFu) - •u (h 3 F (2.10-13)

aLŽhl'L (hF (h2F)
-3v fh2h3 (F - aw v

The spherical coordinate form of V2F then follows from substitution for
u, v, w, h 1 , h 2 , h 3 in the above expression.

It is found that

OF a2F F a2 F
(¶72j) 2 _zsz89W(vOF r Or O+e

-- e + rr

2r Fe 2- F 2 9F
r ~ ~ r6 r 2 s F Pain 6 at
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or

(72 V2(Fr) 2 Fr 2 ain (Fe sin 8) -r sine a

(2.10-14)

ar2+ r 4)e + 2 ~ Y ae +r2sn a4

a_ __ 2 cos 8 IFO 1
+ - 2-Qh F

÷ r 2 ae - r 2 sin2 e as - r 2 sin2 e 6

or

FF 3F

(V2 F) F)e r
2  

e - r
2 

sin 2 e $ - r 2 
sin

2 e Fe (2.10-15)

(V
2

F) 2 32 F c2F

3FF
- r 2 sin2 8 F + r 2 sin2 e as r sin • as

or

- 2 + 2 '0s e !! + (2.10-16)2 r 2 sin2  r F,+ 2 sin2 e as r2sine as 6

EXERCISES

2-25. Derive the cylindrical forms of curl and divergence by applying Stokes's
theorem and the divergence theorem to the appropriate coordinate
surfaces and enclosure.

Repeat this for spherical coordinates.
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2-26. Derive an expression for i V dS where V is a well-behaved scalar point

function and S is the surface of an orthogonal curvilinear
parallelepiped. Then employ equation (1.17-6) to show that

A A A

grad V ' +_.. L •_ v V w. +'
h, 3u h2  ^V h3  ^

V A a A a A
+ h 1 h (uh 2 h 3 ) + T (vh3hj) + - (whjh 2 )J+ l2h3 uv (V~ l +•

The second line of this expression must be zero since grad V cannot
involve the absolute value of V. Prove this independently by means of

the identity i dS = 6.

2-27. If r +y + kz and r -I•1 prove that

V2(r ) = n(n+3) rn 2

by (a) expansion in rectangular coordinates

(b) substitution in equations (2.10-14, 15, 16).

2-28. Derive V
2

F - I V
2

Fx + T V2
Fy + k V

2
Fz in cylindrical coordinates by

substituting the curvilinear forms of the Cartesian components of T,

equation (2.7-2), in the cylindrical expression for V
2

V, equation
(2.6-4), and by subsequently employing equation (2.2-5) to relate the
rectilinear to the curvilinear unit vectors.

2-29. Derive V2
F in cylindrical coordinates by substituting the cylindrical

forms of grad, div and curl in the equation

V
2

F - grad div F - curl curl 7

2-30. Use the divergence theorem to demonstrate that the volume defined by a

closed surface is equal to

(a) j is (grad R
2 ).dS

where R is the distance from a .ixed plane to the surface

element dS.

(b) jis (grad p
2
).dS

where p is the radial distance from a fixed external line to the

surface element dS.
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(c) 1/6 is (grad r
2
).dS

where r is the radial distance from a fixed external point to
the surface element dS.

2.11 Change of Volume Resulting from Transformation of Coordinate Values

If the coordinates (x,y,z) of any point of a region of space are
transformed to (x',y',z') in the same rectangular system, the volume of
an element defined by a set of such points will be altered accordingly.
Thus consider a parallelepiped initially defined by the vector edges

OP - iAx, OQ - jAy, OR - kZAz. Let 0 move to 0', P to P', etc, and let

O'P' - iAxI' + jAy1 ' + kAz'

O'Q' - iAx 2 ' + jAy 2 ' + kAz 2 '

O'R' = fAx 3 ' + 3Ay 3 ' + kAz 3 '

Then in the limit as Ax, Ay, Az.O

aXl, = 8x' Ax , = y. Ax , a Lz' Ax
Ax 7x ax

AX2, - ax, by Ay2 ' = L Ay AZ2 ' - L ty

x x ay ay

ax' z y :AX3 ' - -w Az AY3 y - Az AZ30 ---- AZaz 3z 3z

where the derivatives are evaluated at 0 and are supposed to be
continuous in a neighbourhood of 0.

It follows that

O ax ax a

('R -1' +~ 2f. + LW) &z0'ax 3 az az

whence the volume of the transformed parallelepiped is given byi
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L" +- ayl y
L ; +k + T + k X + - L y + L X A A

or

ax' ax' ax'
ýx- Wy 3z

AT' - Y' ýy_ 1y' AT -E J (x''----•' y A, (2.11-1)

ax ay 3z x-y,z

az' az' az'

2.12 Surface Relationships

2.12a Surface gradient, divergence and curl
A A. A

Let E and 4 be orthogonal surface coordinates and let n, r, n form a

right-handed set where n is a unit normal to the surface (Sec. 2.4b).
Then if P and Q are closely spaced points of the surface and V is a
scalar point function having continuous derivatives upon the surface we
may write

VQv VPvQ - Vp 0-V AC + -i-Aý

A A

aV +i-aY- A A

A A

P

where r - P"Q

Hence at all points of the surface where n and L are continuous

A

dV . . + L (2.12-1)

where a is the unit tangent to the surface in the direction of motion.

For obvious reasons we define the second factor of the scalar product as
the surface gradient of V and write

I A

grads V I M (2.12-2)

h aE a
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dV

Since Ls is independent of coordinates, the surface gradient as defined

above will remain invariant if the surface be defined in terms of
alternative orthogonal coordinates. V may or may not be defined outside
the surface; in any case grads V is directed tangentially. It follows
from (2.12-2) that

grads • - r grads C - - (2.12-3)
h h

The surface divergence and curl are defined in terms of orthogonal

surface coordinates as follows15

A A

divs F -C-.F + h .F (2.12-4)

A A

curls F L xL + _h _ (2.12-5)

It is easily shown by substitution in (2.12-2), (2.12-4) and (2.12-5)
that the various expansions developed in Sec. 1.16 for the gradient,
divergence and curl of scalar and vector products have their direct

counterparts in surface relationships. Thus if V, U, F and G are scalar
and vector point functions defined upon the surface but not necessarily
outside it, and with or without normal components, then

grads V U - V grads U + U grads V (2.12-6)

divs V F - V divs F + grads V.P (2.12-7)

curls V F - V curls F + grads V x F (2.12-8)

grads(F.J - (F.grads)G + (G.grads)F + F x curls U + C x curls f

(2.12-9)

where

F - F -

(-f.grads)U +J F4 &
hc3C h ac.

15. Some writers employ the terms 'surface divergence' and 'surface curl'
with completely different connotations. .i
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curls(F)G) - (G.grads)F - (F.grads)G + F dive U - G divs T (2.12-10)

divs(FxG) - G.curls F - F.curls d (2.12-11)

When V has continuous derivatives both upon and beyond the surface we may
relate grad V and grads V at a point of the surface in the following

way. Let P be a point of the surface S and let PQ - LAx. In general, Q
will lie beyond S. The normal from Q to S meets S in R. Let the
coordinates of R be 9p + At, Cp + AC. Then

)pp / +(-)n

- V + L- LV +" av (C C).ACap

P

TAIX . t av + l1 v 3 an

P

Then at all points of the surface

A A

r h Cat b C D4 n-)

whence

AA A

grad V ! - + !-" + nn
h Cat h ;ac an

or

- av
grad V - grade V + n : (2.12-12)

Substitution of F for V in the above analysis leads toK

A A

OF C OF Cx •x A •
- -Z + - n iax h 34 hbC 3 xan
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whence

A A

div + T -' + n.-

since i, j, k are independent of •, •, n

hence

div diva F + n. n (2.12-13)

In like manner it may be shown that

curl F = curls F + n x (2.12-14)

2.12b Integral transformations

From equation (2.12-5)

A A
A - ý

-: -F an.curls F h EF - - F

A A

Z A A A A A

h_ Tc (&F C+;F +F (F (gF + ;F Fn)

On expansion this yields

Ai A AF 1 A

n.curlsF aF -. L + 1

(2.12-15)
A A A A

TE-TE F icý-In

It is easily shown (see Ex.2-22., p. 146) that

or

A 
3

E+ (2.+2-1+)

I .... .
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A
whence, upon scalar multiplication by n, we obtain

A A A A

n .' _ " 2.j (hz0,h sO) (2.12-17)

On writing n - x C and expanding the last term of (2.12-15) accordingly
we obtain

( A A A A A A

n n

whence

Ah A 3F 3

n.curls F A A F - ý1 F + F L - -- L (2.12-18)
h a h at h at h ; a

A A

Scalar multiplication of (2.12-16) by C and C in turn yields

A Ah

E ac . C (2.12-19)

hC at c

and

A A
ah

-; - (2.12-20)
h" h;h h a

A A AA^Since - (.) 0 and 7- (Q.C), 0 we have

A A A A

•C€ + c.! - 0 and t.;+ . - 0

hence (2.12-19) and (2.12-20) may be transformed into

A A 3h

C at (2.12-21)

and

A A

ah
(2.12-22)

- C h h at

Substitution of (2.12-21) and (2.12-22) in (2.12-18) then yields
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1 3F 1 3F F E h F ah
n.curls -F hh

or

n.curls F - I- 3(h F) (h&FE) (2.12-23)

h~crlsF ( C 4 aC

An analysis formally identical with that given in Sec. 2.9a then leads to
Stokes's theorem for curvilinear surface coordinates, viz

f (curls F).dS - F.dr (2.12-24)

Sr

This is seen to hold whether or not F is tangential to S.

The expression for surface divergence (2.12-4) may be transformed in a
similar manner. We obtain

divs F - h - (hCFE) + L (hY) + L h + . Fn (2.12-25)ah C at ac h E-thý

It may also be shown that

I a• a
I (h F ) + - (h F dS - 0 n' ds (2.12-26)

s r
where a' is the outward normal to r tangential to the surface, hence the
curvilinear surface form of the divergence theorem becomes

dive F dS - 4 F~n ds + (divs n) F.dS (2.12-27)

S r s

When the surface is planar, or F is everywhcre tangential to It, we have

dive F dS - 4 F.n ds (2.12-27a)

S r

The integral transformations expressed by equations (1.17-1), (1.17-3)
and (1.17-5) have the following surface counterparts:
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SdS x grads V - V dr (2.12-28)

s r

curls F dS - (n'xF) ds + f diva n (dSxF) (2.12-29)

S r S

grads V dS - V a' ds + f (divs n) V dS (2.12-30)

S r S

Equation (2.12-28) is most easily verified by expanding curls V a in

accordance with (2.12-8), where a is a constant vector, and applying
(2.12-24). (c.f. the alternative proof of (1.17-1)).

Equation (2.12-29) represents the surface form of Ostrogradsky's theorem.

It is readily demonstrated by the expansion of divs(aiF) in accordance
with (2.12-11) and a subsequent application of (2.12-27).

To obtain (2.12-30) expand diva V a in accordance with (2.12-7) and apply
(2.12-27).

EXERCISES

2-31. Prove (2.12-10) and (2.12-14).

2-32. Show that curls n - 0 by considering the 1. E and n components in turn.

2-33. Develop a proof of

0 V dr - xd gradsV

r s

independently of chat suggested in the text by showing that

9 d - (Vh CdC) dt - (Vhcjdt) d;

r S

and noting subsequently that

(Ch (Ch dS 0

dS h Ch~ r. 0 3 C)
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2-34. Show that

di - 1 Ca•
diva (h F) + L (h F) + (divs n) F

2-35. Show that

I (h F) +- (hF dS F.n' ds

"S r

2-36. Develop a proof of (2.12-30) in the following way.

Show by direct integration that

grads V dS - V in' ds - C (h) + ^ V dS

S r S C

and by consideration of the C, C and n components in turn demonstrate
that

A A A A

(Qh( + (C (;ht) -n diva n

2-37. Employ (2.12-30) to show that diva n is invariant with respect to change

of orthogonal coordinates and apply this result to (2.12-27) and

(2.12-29) to show that dive F and curls F are likewise invariant.

2-38. Derive Green's theorem for surface coordinates, viz

A
I (V V 2sU - U V 2

sV) dS " (V VsU - U VsV).n' ds

S r

where Vs - grads and V
2

S - diva grads

2-39. If V is well-behaved upon a closed surface show that

7V2 s V dS - 0

S

i





CHAPTER 3

GREEN'S THEOREM AND ALLIED TOPICS

3.1 Green's Theorem

The symmetrical and asymmetrical forms of Green's theorem have been
stated and proved in Sec. 1.17. They are re-introduced here in rather
more general terms as follows.

Let S1, S2 --- Sn be closed regular surfaces which neither intersect nor

enclose one another, and let E be a closed regular surface which encloses
all of these (Fig. 3.1). The simply connected region of space bounded by
the surfaces is designated R (or T, for the purpose of volume
integration).

Fig. 3.1

If V and U are single-valued scalar point functions with continuous
second derivatives in R, then

grad U.dS - V V2U dT + grad V.grad U dT 1.17-10]
S• S E.n T T
1..n

169
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and

(V grad U - U grad V).dS - (V V2
U - U 7

2 V) dr 1.17-11
3.1-2J

I..n

Substitution of grad V for F in (1.17-9) yields

VgradV.d-S V f V2VdT+f grad V.gradVdT

S I.. ES1..n£

or

dS V 92V dT + F grad V12 dT (3.1-3)
S nd I v

SI..nz T T

where n is distance measured along the outward normal

Since (V-U) is single-valued with continuous second derivatives in R, it
may replace V in equation (3.1-3), in which case

(V-U) -(V-U)dS - (V-U) V2 (V-U)dT + igrad(V-U)1 2 dT (3.1-4)
S I . " J

S ..nET

We will have occasion to use both of these modified forms of Green's
theorem, equations (3.1-3) and (3.1-4), in the next section.

Because V and U are required to be well-behaved functions within R it is
necessary to exclude discontinuities by means of closed surfaces. Such
surfaces, however, may be invoked in the absence of discontinuities, and
the related surface integrals then replace the volume integrals taken
over the regions enclosed by these surfaces. Thus, if S1 represents such

a surface, Green's theorem may be applied to the region RI (rT) enclosed

by Si. Upon adding the associated equation to that obtaining for the

region R the two surface integrals over S1 cancel because of the reversal

of the positive sense of the normal on passing through the surface, so
that we are left with surface integrals over S2..nE and an integration

volume T + T1. This expression could, of coarse, have been written down

directly.

1. It Is usual to write the derivative in partial form. There are
arguments for and against this.
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It is often necessary to apply Green's theorem to an unbounded region
2

comprising all space outside the set of local surfaces S .. n* In this

case the r surface is moved out to infinity in all directions. The value
of the surface integral over I then depends upon the manner in which the
scalar integrand behaves at infinite distance. If R is distance measured
from a local origin, then the function V is said to be regular at
infinity if

(a) RV is bounded as R-

(b) R2 VV is bounded as R-.

ie V is regular at infinity if V vanishes at least as i and grad V

vanishes at least as 'I for sufficiently large values of R.

When V and U are both regular at infinity it is seen that the surface
integrals over I vanish at infinite distance (surface area increases only

as R2 ), so that equations (3.1-1) to (3.1-4) hold with I deleted, while T
includes all space outside S 1.. n.

3.2 The Harmonic Function

A scalar point function V is said to be harmonic at a point if it has
continuous second derivatives and satisfies Laplace's equation (V2 V-O)

throughout some neighbourhood3 of that point. Correspondingly. a
function is harmonic in an open region if it is harmonic at every point
of that region. When the region is closed we will suppose, in addition,
that the second derivatives of the function are continuous at all points

4
of the boundary . Any function which is stated to be harmonic in an
unbounded region is, by implication, regular at infinity.

The following theorems relate to functions which are (a) harmonic in the
closed region R bounded by the surfaces S I..n, where all surfaces are at

finite distance, or (b) harmonic everywhere outside the surfaces Sl.

all of which are at finite distance.

Theorem 3.2-1

If V is harmonic in the closed region bounded by the surfaces S I..n.

then the total surface integral of the normal derivative of V is zero.

2. A region is bounded or finite if all of its points lie within a sphere
of finite radius; otherwise it is unbounded or infinite. It is seen
that the term 'unbounded' does not necessarily imply 'devoid of all
boundaries' but rather 'devoid of a closed exterior boundary'.

3. The word 'neighbourhood' has been used in a colloquial sense in
earlier pages to refer to the vicinity of a point or line. Strictly. a
neighbourhood of a point is any open region which contains that point.
The word will be used in this sense from now on.

4. This limitation may be unnecessarily restrictive. See Kellogg,
pp. 211-2.
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Proof: Interchange V and U in equation (3.1-1) and put U - 1. Since
7

2
V - 0 and grad U - 0 it follows that

L dS - 0
an

S I..SI..n£

Alternatively, we have from the divergence theorem

SdS - grad V.dS - V
2
V dT - 0

S1..nE S1..n Z

[When V is harmonic everywhere outside S .. n the surface integral over

I remains equal and opposite to that over S1..n as E recedes to

infinity. This does not preclude the possibility that V is regular at

infinity because 3.V may decrease only as 1 while the area of surface
anR

integration increases as R
2

. However, should L- decrease at a greater

rate, eg as the surface integral over E will vanish at infinity

and the integral over S .. n must then also vanish.]

Theorem 3.2-2

If V is harmonic in the closed region R bounded by S I..n and has the

sane value at all points of the surfaces, then V is constant

throughout R and equal to its value on the surfaces.

Proof: If V - V' upon the surfaces, then from equation (3.1-3)

V 0L dS Igrad V1
2 

dr

S I..Sl..nE

But L- dS - 0 from Theorem 3.2-1
jan

S I..S1..nZ

hence F r grad V1
2 

d- - 0J
T

Since fgrad V1
2 

is positive or zero for any volume element, it must be
zero for all volume elements if the volume integral is zero. Hence
grad V a 0 throughout R, and V is constant throughout R and equal to
its value on the surfaces.
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Theorem 3.2-3

If V is harmonic in the closed region R bounded by the surfaces
S ZE and its normal derivative is zero at all points of the

surfaces, then V is constant within R.

Proof: Since aY is zero at all points of the surfaces, it followsanr
from equation (3.1.3) that J grad V12 dT - 0, whence, for reasons

given above, V is constant as stated.

Theorem 3.2-3a

If V is harmonic everywhere outside the surfaces S1..n' and if its

normal derivative is zero at all points of these surfaces, then V is
zero upon and outside the surfaces.

Proof: If Z is a closed surface surrounding S1..n then

f V dS + V- -LdS I F grad Vl2 dr

Sl..n T

The surface integral over 5..n is zero because - 0 at each point.1..n an
If Z recedes to infinity the associated surface integral disappears,

because V vanishes at least as R
3  

while the surface area increases
aneR3

as R
2

.

Hence

f Igrad V1 2 
dT - 0

where T is the space external to S1..n

V is consequently constant within this region and, being zero at

infinity, is zero throughout.

Theorem 3.2-4

If V is harmonic in the closed region R bounded by the surfaces

SI..nZ, and its value is specified at each point of the surfaces, then

V is uniquely determined at all points of R5

5. It is assumed in these theorems that the function V exists. See

Sec. 3.8.
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Proof: Le: U be a scalar point function, harmonic in R, which has the
same value as V upon the surfaces S .. nZ. Then V - U - 0 at each

point of the surfaces and V
2

(V-U) = V
2

V-P
2

U = 0 in R.

Hence equation (3.1-4) becomes

i grad(V-U)1 2 dT - 0

T

ie

f fgrad V - grad U12 dT - 0

T

It follows that grad V - grad U at all points of R so that V and U can
differ only by a constant. But V - U upon the surfaces so that V and
U are equal throughout R, hence V is uniquely determined.

Theorem 3.2-4a

If V is harmonic everywhere outside the surfaces S 1.n and its value

is specified at each point of these surfaces, then V is determined
uniquely at all points outside S 1 .. n"

Proof: If the point function U is harmonic outside S1..n and has the

same value as V at all points of these surfaces, and if E is a closed
surface surrounding S 1 .. n, then from equation (3.1-4)

(V-U) Ln(V-U)dS + (V-U) Ln(V-U)dS - f/ grad(V-U)1 2 
dT

S1..n I .

The surface integral over Sl..n is zero because V - U - 0 at each

point. As Z recedes to infinity the associated surface integral

disappears because (V-U) (V-U) vanishes at least as R while the

surface area increases as R
2

.

Hence

f Igrad(V-U)1
2 

d¶ - 0

T

where T includes all space beyond Sl..

The arguments of the previous theorem then apply.
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Theorem 3.2-5

If V is harmonic in the closed region R bounded by the surfaces S 1..Z

and is constant over each of these surfaces in turn, and if the
surface integral of the normal derivative of V is specified for each
surface, then V is determined throughout R to within an additive
constant.

Proof: If the point function U also satisfies the given conditions,
then from equation (3.1-4)

(V-1U)s L~(V-U)dS --------+ (v-U)2  ~(V-U)dS J IgradCV-U)12 dT

SI £ :

In this case V-U is an ,nknown constant for each surface. The

equality of 2 dS and L dS for each surface is sufficient to
an ; an

reduce the total surface integral to zero, so that

f Igrad(V-U)1
2 dT - 0

T

Previous arguments then shown that V and U can differ only by a
constant within R.

It should be noted that the theorem continues to hold when the surface
integral of the normal derivative is specified for all but one of the
surfaces; this is sufficient to define its value over the remaining
surface in accordance with Theorem 3.2-1.

Theorem 3.2-5a

If V is harmonic everywhere outside the surfaces S .. n and is constant

over each of the surfaces in turn, and if the surface integral of the
normal derivative of V is specified for each surface, then V is
uniquely determined on and outside the surfaces.

Proof: Suppose that U also satisfies the given conditions and that r
is a closed surface surrounding S l..n Then from equation (3.1-4)

(V-U)S, f !-(V-U)dS ---- + (V-U) L(V-U)dS f Igrad(V-U)1 2 dT

S 1  E T

As in the previous theorem the terms associated with the surfaces
Sl..n vanish. As E recedes to infinity the associated surface

integral approaches zero (see Theorem 3.2-4a), so that
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r Igrad(V-U)1 2 dT = 0

where T includes all space beyond S1

It follows that V and U can differ only by a constant on and outside
S 1 .. n, but this constant is zero since both V and U vanish at

infinity.

Theorem 3.2-6

If V is harmonic in the closed region R bounded by the surfaces S I..n

and its normal derivative on the surfaces is a specified function of
position, then V is determined throughout R and upon the surfaces to
within an additive constant.

Theorem 3.2-6a

If V is harmonic everywhere outside the surfaces S and its normal

derivative on the surfaces is a specified function of position, then V
is determined uniquely on and outside the surfaces.
Theorems 3.2-6 and 3.2-6a follows from equation (3.1-4) in much the

same way as the other uniqueness theorems.

Theorem 3.2-7

If V is harmonic in a closed region R, then V cannot be a maximum or a
minimum at any interior point of R.

Proof: Suppose that V is a maximum at some interior point 0 of R. If
S' is a spherical surface of radius 6 centred upon 0 then, for

sufficiently small values of 6, Lv must be negative at all points of

the surface, where r is distance measured from 0. The surface

integral of -n over S' must likewise be negative and is given by

1- dS - f dS - grad V.dS

St S1 St

But

f grad V.dS - V2 V dT - 0

S' T1

where T' is the volume enclosed by the sphere, hence the assumption
that V is a maximum at 0 involves a contradiction. A similar
contradiction appears when it is supposed that V is a minimum at 0.
It follows that V can be neither a maximum nor a minimum at an
interior point of R.
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-, L (1F ] dS" - d, (3.3-4)

4w-F r in-' Onrr
s1..nr

3.4 Gauss's Integral

Solid Angle

On putting V - 1 in equations (3.3-1) and (3.3-3) we obtain

0 . ()dS (where the origin of r is a (3.4-1)- On d point exterior to R.)

4() dS (where the origin of r is an (3.4-2)
4 f O rd interior point of R )

S1..nE

For the case of a single closed surface, S, these equations reduce to

0 - - f (L dS (exterior origin) (3.4-1a)

S

4w - - ;- (41) dS (interior origin) (3.4-2a)

S

The integral is known as Gauss's integral.

The solid angle subtended by a regular surface S at a point 0 (not lying
upon the surface) is defined by

fl- F . dS (3.4-3)

S

where i is the position vector of the element dS relative to 0 and r is
distance measured from 0.

Since grad rd- (1) a - L at points other than 0.Sic ra d r. r. r 3

a" -~ grad .d d- - - dr (3.4-4)

S S
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hence from equations (3.4-1a) and (3.4-2a) the solid angle subtended at a
point by a closed surface is zero or 41r according as the point lies
beyond or within the enclosure.

It further follows that all open surfaces bounded by the same regular
curve subtend equal solid angles at a point, provided that they lie on
the same side of the point, when the positive sense of the normal at the
surfaces is taken to correspond to a particular currency around the
bounding curve (Ex.1-46., p. 64).

EXERCISES

3-1. Suppose that in the anaylsis leading to equation (3.3-3) S6 is enclosed

by a regular surface S. By applying (3.1-2) with U - 1 to the regionr

bounded by S and S6, shows that as S shrinks uniformly about 0

ý - - 1 dS [V L - 1 dS *4,Van [r () invvi f[ an r 5- 0
S S6

(where the positive normal is directed towards 0) and so demonstrate

that f T dv is convergent.
T

3-2. Use Green's formula to show that when V is harmonic in the closed region
bounded by a spherical surface, its value at the centre of the sphere is
equal to (a) its average value over the surface (b) its average value
throughout the sphere.

[(a) is known as Gauss's average-value theorem.]

3-3. A square of side 2h and centre P is orientated parallel to the x and y
axes of coordinates. If the square lies within a region throughout
which the scalar point function V is well-behaved, show, by expansion in
a Taylor series, that

h M {v(1) + V(2) + V(3) + V(4) - 4 V(P)) - +

correct to the third order of smallness, where 1, 2, 3, 4 are the centre
points of the sides of the square.

Extend this to the three-dimensional case to show that

{V(1) + V(2) --- + V(5) + V(6) - 6 V(P)) - + +

to the same order of accuracy, where 1-6 are the centre points of the
faces of a cube of edSe 2h and centre P.
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and

V - V uS - US2

j dS ! dS

SI S,

[Hint: Substitute (V - CiU) for V in equation (3.1-3) and choose a to
eliminate the surface integrals.]

3-6. If V is harmonic in the closed region R bounded by the surfaces Sl .. nz

show that V is uniquely determined by R provided that (a) V is specified

at every point of one or more surfaces (b) 1 is specified at everyatn

point of certain of the remaining surfaces (c) V is constant over the

rest of the surfaces and nV dS is specified for each of these.
f n

3-7. If V is harmonic in the closed region R bounded by the surfaces S .. nz,

show that V is uniquely determined in R provided that for all points of
•V

the surfaces L+ aV - B, where a and 0 are specified continuous
an

functions of position and a is everywhere positive.

Extend this theorem to the unbounded region outside S l..n

3-8. If V is harmonic within the closed region R bounded by the surfaces
SI.,nZ, show that V is determined in R to within an additive constant

provided that the vector tangential component of grad V (and hence the
derivative of V in any tangential direction) is specified at each point

of the surfaces, and LdS is specified for each surface in turn.
f n

Extend this theorem to the unbounded region outside S1 .n

[Theorems 3.2-5 and 3.2-5& represent particular cases of the above in
which the tangential derivatives of V are zero at all points of the
surfaces.]

3-9. If V is harmonic within the closed region R bounded (externally) by a
single surface S, show that V is determined in R to within an additive
constant provided that the tangential derivatives of V are specified at
each point of S.

3-10. Derive equations (3.4-1) and (3.4-2) from equations (3.4-1a) and
(3.4-2a) by superposition, remembering thcz the positive sense of the
normal at any one surface may be required to reverse with change of
position of the origin of r.

3-11. Sbow that if the position vectors drawn from a point 0 to all elements
of a surface S cut a sphere of unit radius centred upon 0 not more than
once at any point of the sphere, then the scalar area so defined upon
the sphere is equal to the magnitude of the solid angle subtended at 0
by the surface.
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3-12. Derive an expression for the solid angle subtended by a plane disc of
radius a at a point on its axis at a distance d. Hence show that when
an exterior point 0 approaches any interior point of a bounded plane
surface along the normal on the positive side, the limiting value of the
solid angle subtended at 0 by the surface is -2w. (cf Ex.1-47., p. 64)

Ans: n -±2w [I d
(d2 + &2)1

3-13. Show that when a point 0 passes through an open regular surface S at
some interior point of S, the solid angle subtended at 0 by S changes
numerically by 4w.

[Hint: Close the system with a second surface and make use of
equations (3.4-1a) and (3.4-2a).]

3-14. A line drawn normally from a point to the edge of a half-plane makes an
angle 8 with the half-plane. Use the result of Ex.3-11. to determine
the magnitude of the solid angle subtended by the half-plane at the
point.

Ans: 2 (w - e)

3-15. By substituting yr for U in equation (3.1-2). where y is a real

constant, and proceeding as in the development of Green's formula, prove
that

4wV o]. f1 eyr 3V _ (V eyr)] dS ser (V2-y2)V d2

0j r~ an an r\~ ~, S-j r ( )Vd

S1..n r

according as the origin of r lies within or without the integration
space.

3-16. Let V be a scalar point function which is well-behaved throughout the
region R bounded by surfaces S .. nE, and let (V2 -Y2 )V be a specified

function of position in R, where y is a real constant. Show that V is

uniquely determined in R provided that V or is specified at all

points of the surfaces, or provided that the boundary conditions of
Ex.3-7. or 3-8. are satisfied.

3-17. By substituting 1 coo ar and - sin ar in turn for U in equation (3.1-2).
r rwhere a is a constant, show that

0 "f{ cos ar1- V- (coo ar dS- f cos or (V2+a2)V d¶

S.E

0 - sin ar -V sin a dS - • sin ar (V2+, 2 )V dt

S1..8 E
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3-18. If V is harmonic throughout a region R and V and are zero upon a

regular surface element which bounds R in part or lies within it, then V
is zero throughout R.

Prove this in the following way:

Let a sphere of radius a be so drawn as to project a short distance
through the surface element into R, the intercepted portion of the
element being designated S1 , the spherical cap S2 and the enclosed

region T. If r is distance measured from the centre of the sphere,

show, by identification of ( - 1)with U in equation (3.1-2) that

V dS - f (- 1) V2VdT - 0

S2  T

Assuming that T is sufficiently small to ensure that V does not change
sign within it, show that V must be zero throughout T, and hence, by
iteration, throughout R.

3.5 Treatment of Surface and Point Discontinuities in Scalar Fields

Suppose that the scalar point function V and/or its derivatives are
discontinuous upon an open surface S which lies within the region R of
Fig.3.1. We may exclude S from the integration space by surrounding it
with a tightly-fitting envelope which comprises essentially the two
surfaces $' and S" (Fig.3.2). The additional surface integral which then4 appears in equations (3.3-1) and (3.3-3) is

S1 V.•V S V 4 L )d S 1 aV fs a (L A
r, an an 4 dS + ;IV dS- r an ItdS

where the positive normal is directed in each case towards S

There is a 1:1 correspondence of surface elements in S' and S" since they
are indefinitely close together; in particular, the same value of r may
be assigned to corresponding elements relative to any point outside S,
and the positive normals are oppositely directed. The above integral
expression may therefore by brought into the form

N rav)S _ dS - (V ,- VS ) L dS

where the positive sense of the normal for both S' and S" is that defined

by 5',

9. It is assumed that the contribution to the surface integral from the
strip which joins S' and S" at the boundary of S approaches zero as the
envelope shrinks about S.
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S

'I
I,

Fig. 3.2

or, alternatively,

dS- V, -V 1  dS

where the positive sense of the normal for both S' and S" is that defined
by S".

Each of these two expressions is equivalent to

-f 1A(ý)d dS +- AVV ) ds

S r Y_ S a

where AV and A are the increments of V and Ln corresponding to\a~n/ an
positive motion through S when the same arbitrarily-defined positive

sense of the normal is assigned to both sides of the surface, and a (•)
is the associated normal derivative of 1.I

The modified form of Green's formula then becomes

0.V S " V a dS + AV A - •A dS - V d,

St .. nr S
(3.5-I)

where f is now employed to denote the limiting value approached by the

volume integral as the S'S" surface shrinks about S (and the 6 sphere
shrinks about 0).

This equation continues to apply when S is closed, so long as T includes
the region embraced by S. As before, the right-hand side is zero when 0
lies Inside S1 or S2 etc, or outside Z. Alternatively, we may write
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0 U- V a (IIdS - !.--dT

S Z..nzS TS

(3.5-2)

where TS is the region enclosed by S.

In this case the right-hand side is zero when 0 lies inside S, S, or S 2

etc, or outside E. Since S represents a surface of discontinuity, V and

n are evaluated at points lying just within the region of integration.

Now suppose that points of discontinuity10 (singular points) sre present
within R. Let a sphere of radius e be centred upon some such point P.
If, wifhin this c sphere, V takes the form f(r') + V', where r' is
distance measured from P and V' is a well-behaved point function, then
the surface integral over the sphere is given by

- V � (03 dS

S£

- - ; (f(r')+V') - (f(r')+V') an dS

S
C

aran r an1r

-- f'( ) 1 dS - 1-V:r dS - f(,) j L-! dS - , L ( dS

S S S S
C £ £

Sioce the origin of r lies beyond the c sphere, the third term of this

expression is zero. The first term may be shown11 to be equal to

-f'(c) 4 -p for all values of c < rp so long as the £ sphere does not cutr

other bounding surfaces; in any case, it clearly reduces to this as c
approaches zero. Furthermore, as "*0, the remaining terms approach

( gradV')P. f d-9 -V-ef L( dS

S S
C C

10. is discontinuity of V or its first or second derivatives.

11. See Ex.3-19., p. 188.
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and each of these is zero, hence

Lim V - dS - -fV 4)w2

C+O f ran an 41lr rp

SE

Cases of particular interest are those for which f(r') = a- where a is a

rn

constant. The limiting value of the surface integral over S is then4ira 1-n £
Sn 1-n If n > I this expression approaches infinity as £40; ther

p
associated volume integral consequently approaches infinity in the same

12
way since the difference between the two integrals remains constant

When n - 1 the limiting value is -- a and when n < 1 the limiting value isr
p

zero. Hence for n = 1 and n < I Green's formula becomes respectively

40Vo J' - v a dS + r-- -2- d, (3.5-3)

$1I..n Z T

and

4 0  2o - V ) dS I T d, (3.5-4)

where f denotes the limiting value of the volume integral as the e

sphere shrinks about P and the 6 sphere shrinks about 0.

These formulae may be extended directly to cover multiple point
singularities.

Before leaving the subject it should be remarked that while Green's
formula and its variants may be applied to any scalar field having the
requisite degree of continuity, no useful purpose is served by its
application to a field whose value is arbitrarily assigned from point to
point (within the limitations imposed by requirements of continuity). In
this case its value at the point 0 is uncorrelated with its value outside
a neighbourhood of 0, so that the ability to express V in terms of V and

0
its derivatives elsewhere is largely illusory Indeed, it is clear from

12. This, of course, is true in all cases where the alteration of a
bounding surface changes both the associated surface and volume
integrals, so long as discontinuities continua to be excluded from the
integration space.
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equation (3.3-1), when one of the surfaces SI..n is identified with S6S
that the contribution to V of the component of the field outside a

0

neighbourhood of 0 is necessarily zero. However, when the V field is
derived by some mathematical process from a primary field, and in such a
way that the value of V at any point is dependent upon the value of the
primary field at all points, then V is determinate and inter-related
everywhere and the interpretation of Green's formula is no longer
trivial. It is in this context that Green's formula is applied in
subsequent pages.

EXERCISES

3-19. Let the scalar point function V be defined by V E -L_. where r' isr•

distance measured from some point P. If 0 is a point not coincident
with P and r is distance measured from 0, use Green's formula (3.3-3) to
express V in terms of a surface integral over a spherical surface S of

radius R centred upon P for the case R 4 rp, by showing that both the

surface integral at infinity and the volume integral outside S are zero.
Hence prove that

r r p
S S

Confirm this by applying equation (3.3-1) to the region bounded

externally by S and internally by a small auxiliary sphere centred upon

P, or, alternatively, by applying (3.5-3) to the region bounded
externally by S.

Now suppose that R > rp. Hake use of equation (3.3-3) or (- .- 3) to

show that in this case

L- EE dS -E4,R

S S

These results have important consequences in potential theory and its
applications.

3-20. Make use of equation (2.6-8) to obtain an approximation for the volume
'VV

integral of L21 over a spherical shell centred upon the point P,

given that V - a/r n where r' is distance measured from P and a is a
constant, € and e' are the internal and external radii of the shell and
r is distance measured from some external point 0. Show that for small
values of c' and n > 1 the integral is approximately equal to

4i an(l/cn'I - 1/0 U-1)/r ; for n - I it is zero for all non-zero c;
p1-n - -nand for n < I it is given approximately by 4w an(c - ,-)/rp

Confirm that these results are consistent in respect of limiting
behaviour with the results obtained for the surface integral over the c
sphere in the analysis leading to (3.5-3) and (3.5-4).



Sec.3.6] GREEN'S THEOREM AND ALLIED TOPICS 189

3-21. A scalar point function V is well-behaved throughout the region bounded
by S 1 -nE. Its value at an interior point 0 is consequently given by

equation (3.3-3).

The magnitude of V is now altered at an interior point P by the addition

of a component which takes the form -, between r' - 0 and r' = re

where r' is distance measured from P. Between r' = r' 1 and r' - r' 2 the

additional component tapers smoothly to zero. The value of V at 0 is
obviously unaffected by the modification at P, provided that r > r '2,p
but equation (3.5-3) is now applicable.

Since V2 V has the same value as for the unmodified field in the regions
defined by r' < r', (r' ; 0) and r' > r' 2 , and since the transitional

region may be made very small, how does one dispose of the unwanted term
4,a?
rp

V2V
Ans: The volume integral of - V for the additional component, whenr

taken over the transitional region, just cancels the unwanted

term, irrespective of the size of this region. (Prove this by

evaluation of the integral for the particular case in which the
additional component takes the form f(r') between r' - r', and

ri - r' 2 , bearing in mind that f'(r' 2 ) = 0 and

f,(r' 1 ) a r-i2)

3.6 Uniqueness Theorem for Scalar Fields

The uniqueness theorems set out above for harmonic fields (Theorems 3.2-4
to 3.2-6a) are valid for non-harmonic fields containing surface and point

13discontinuities so long as certain additional requirements are met

Suppose that the region R of Fig.3.1 contains an open or closed surface
of discontinuity S and an isolated point of discontinuity P. Let AV and

A be specified functions of position over S and let V take the form
3n

f(r') + V' in a neighbourhood of P as discussed in the previous section.

Let V2 V be a specified function of position at all points of R not
coincident with S or P. Then the additional surface specification laid
down in any of the above theorems is sufficient to ensure that V (or, at
worst, grad V) is uniquely determined at all points of R beyond S and P.
This may be demonstrated as follows.

13. This also applies to the theorems presented in Ex.3-6. to 3-9.,

p. 182.
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Suppose that the scalar point function U has the same specifications as
V. From equation (3.1-4)

0(V-U) I-(V-U) (is + (V-U) - (V-U) dS + 0 (v-U) - (V-U) dS

S..nS" S

(3.6-1)

T (V-U) V
2

(V-U) dT + T Igrad(V-U)1 2 
dT

where S' and S" are paired surfaces closely fitting S, and S is a smallC

spherical surface of radius e centred upon P. The integration volume T'
comprises R minus the regions enclosed by S'S" and S .

If S should be closed, the above equation is formed by the addition of
two equations, one referring to the region within S and the other to that
outside S and within S E.

The specifications stated in one or other of the uniqueness

theorems 3.2-4 to 3.2-6a are sufficient to ensure the vanishing of the
first surface integral of equation (3.6-1). The first volume integral is
zero because V2 V - V2 U throughout the integration region. If the
remaining surface integrals can be shown to be zero, then, for reasons
discussed previously, grad V - grad U throughout the region under
consideration.

The surface integral associated with S' and S" may be written as

F (V-U)s (V-U) dS - f (V-U)5 , L (V-U)5,, dS
S S' OnfS

where -2- denotes differentiation along the positive normal as definedOns,

by 
S 

t

Now

VS' - VS1, - US, - US,,

or

(V-U)s, - (V-U)s,,

t and

3Vg av au5  a
3mg, -L .n5  -n5 SO5anst an., Onst ans,
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or

a (V-U)S = (V-U)S,,

3nn, ans

hence the surface integrals over S' and S" cancel.

On choosing £ to bring S into that neighbourhood of P whereC

V - f(r') + V' and U = f(r') + U' the surface integral over S becomes

(V'-U') a (V'-U') dS

S
C

In the limit as c+O this reduces to

((V'-U') grad(V'-U')), a sd - 0

s

It follows that all surface integrals are zero and that grad V - grad U
everywhere in R beyond S and P. Further, if V be specified at any point
of S .. ni, then V is uniquely determined throughout R.

The analysis continues to hold in the absence of the bounding surface E.
so long as V is regular at infinity. The extension to multiple surface
and point discontinuities is straightforward.

An important generalisation of the above treatment leads to the following

theorem.

Theorem 3.6-1

Let the region R, bounded by the surfaces S1 .. nE, be divided into a

set of sub-regions with interfaces Sas Sb .. such that a given point

function g and its first derivatives are continuous at interior points
of the sub-regions but are discontinuous upon the interfaces, and
let g, where defined, be everywhere positive or everywhere negative.
Further, let V be a point function with continuous second derivatives
SinaR except upon S S ---b and upon certain surfaces S , S ---- and

points P1, P2 --- lying within the sub-regions.

Then V is rendered piecewise determinate in R, at least to within the
same additive constant, by the specification of all of the following
factors:

(1) div(g grad V) at all interior points of the sub-regions
excluding S,, So --- , P 1 P2 -- "
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(2) V or M at each point of SI.X, or g dS for any bounding

surface together with the tangential derivatives of V at each
point of the surface, or, in the case of a single bounding
surface, the tangential derivatives alone. (If 51..nI

comprise surfaces of discontinuity the expressions should be
evaluated just within the integration space.)

(3) AV and a V through all points of the surfaces Sa
Sb -- Sa, -0

(4) V - Vt + V" in a neighbourhood of each of the points P1 ,

P2 --- where V' is an individually specified discontinuous

point function and V" is any continuous point function.

The proof of this theorem, which involves the expansion of the
function div((V-U) g grad(V-U)) and its subsequent integration (cf
Ex.1-68., p. 79) is left as an exercise for the reader, who should
extend it to the (externally) unbounded case. When g - I at all
points, the problem reduces to that treated above.

The planar equivalent is set out in Ex.3-46, p. 215.

3.7 Theorems Relating to Vector Fields
Vector Analogue of Green's Theorem

Theorem 3.7-1

If a vector point function F has continuous first derivatives and
specified values of curl and divergence throughout the closed, simply

connected region R bounded by the surfaces S I..n, then F is uniquely

determined in R provided that either

(1) the normal component of F is specified at each point of the
surfaces, or

(2) F.dS is specified for each surface in turn and n x F is

specified at each point of the suzfaces, where n is the unit

normal to the surface. (The specification of n x F is

enuivalent, for known values of n, to the specification of

(n x F) x j and this represents the vector tangential

component of V upon the surface.)

In the event that the region R is bounded (externally) by a single

surface S, then (2) above reduces to th.. single requirement that n x
be specified at each point of S.

Both conditions (1) and (2) are met by the more severe requirement

that T be specified at each point of the surfaces.
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Proof: Let F1 and 12 be vector point functions having the specified

values of curl and divergence in R. Then curl(F1 -F 2 ) - 0 and

div(f 1 -F 2 ) - 0, whence F, - " grad V and div grad V - V2 V - 0 in R.

if Fn is specified over S. nE, (f1-F2).n - 0 or - 0 at each point

of the surfaces. It then follows from Theorem 3.2-3 that V is

constant and F1 - T2 in R.

if is specified for each surface in turn, f (F1-F2).dS - 0 or

f dS - 0 for each surface. If, in addition, n x F is specified at

each point of the surfaces, n x(F 1 -F 2 ) - 0, whence the tangential

component of grad V is zero and V is constant over each surface in
turn. It then follows from equation (3.1-3) that V is constant and

F, - F2 in R.

For the case of a single enclosing surface, the constancy of V over
this surface and its harmonic nature within the enclosure are

sufficient to ensure that V is constant and F1 - F 2  in R
(Theorem 3.2-2).

Theorem 3.7-2

If a vector point function F has continuous first derivatives in the
closed, simply connected region R bounded by the surfaces S l..nE, and

if curl T and div ' are zero in R, then F is zero in R provided that
either

(1) the normal component of F is zero at each point of the
surfaces

or

(2) F.ds is zero for each surface and n x F is zero at each

point of the surfaces.

In the event that the region R is bounded (externally) by a single
surface S, then (2) above reduces to the single requirement that the

tangential component of I be zero at each point of S.

"Both (1) and (2) are met by the requirement that F be zero at all
points of the surfaces.

The proof is similar to that of Theorem 3.7-1.

Theorem 3.7-3

If F has continuous second derivatives in the closed region R and V21F

is a specified function of position in R while F is specified at each

point of the surfaces, then F is uniquely determined in R. If

rather than 7, is specified at each point of the surfaces, then V is

determined in R to within an additive constant vector.
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Theorem 3.7-4

If F has continuous second derivatives in the closed region R and

V2 F- U in R, while F has the same value at all points of the bounding

surfaces, then F is constant in R.

Theorems 3.7-3 and 3.7-4 are easily proved by the resolution of F into

rectangular components.

Theorem 3.7-5

If the vector point functions F and G are continuously differentiable

throughout all space and curl F and div C are everywhere zero while

R2 1FI and R2 1GI are bounded as R-, then JF.G dr is zero when taken

over all space.

Proof: Since F is irrotational we may write F - grad V.

But

div VG V div G + grad V.G - F.G

hence

fVG.dS - f F.G dT

where T is the region bounded by some closed surface 1.

The value of the surface integral must, of course, be independent of
any constant component of V since the datum for the latter is
arbitrarily chosen, and this is confirmed by the relationship

V G.dS - VofG.dS+fAV G.ds

- AV U.dS (since C is solenoidal)

I

where V0 may be taken as the value of V at .ome point of E.

If, now, I recedes to infinity, the increment of V over Z will fallI
off at least as - since AV is proportional to RIgrad Vi, and

glgrad vj is bounded. If, in addition, R2 j'6iI bounded, the surface
integral over Z vanishes and the volume integral over all space is
zero.
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This result continues to hold when a finite portion of space is

divided into a system of sub-regions throughout which 'F and " are
piecewise differentiable, provided that the vector tangential

component of F and the normal component of G are continuous through
the interfaces. Since V may be chosen arbitrarily for any one point
of a given sub-region, it is permissible to choose equal values for V
at two adjacent surface points in each contiguous pair of sub-regions,
and so ensure that V is everywhere continuous through the interfaces.
The surface integrals over the interfaces then cancel in the sum
leaving only the integral over the exterior bounding surface Z, and
this approaches zero as E recedes to infinity.

A vector analogue of Green's theorem can be derived for vector point
functions which have continuous first and second derivatives in a
closed region.

If F and Z are such functions then from equation (1.16-7)

div(F x curl C) = curl C.curl F - F.curl curl C

hence, from the divergence theorem,

• (T x curl C).dS - -f F.curl curl Z dT +f curl f.curl " dT

S1..nI T T

(3.7-1)

The syunetrical form of this equation is seen to be

(F x curl? - x curl i)dS - - / (f.curl curl C - C.curl curl f) dT

S1..nr T

(3.7-2)

When C - F, equation (3-7.1) becomes

f (Y x curl V).dS--f '.curl curl F dT + Icurl I2 dT (3.7-3)

S I..n r1. ."n£

These equations may be considered to be vector equivalents of
equations (3.1-1) to (3.1-3).

When grad div F - grad div C - 0, curl curl may be replaced by -V2 in
accordance with equation (1.18-5) and the formal analogy becomes
complete. Otherwise, (3.7-2) is equivalent to



196 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.3.7

i (F x curl C - x curl i).dS - -f (.trad div C - C.grad div ) dT

S1..n T

(3.7-4)

+ f (v - V2F) dT

But

div(F div Z) - div F div C + F.grad div

whence

f (FZdiv).ddS- f div Fdiv C dT +f f.grad div d d,

S . E T T

and

(f div - C div (F.grad div - Z.grad div D) dT

S1..nET

hence equation (3.7-4) way be replaced by

(xcurlcC curl f+ FdivC- div F).dSg - f(.V2U Z.V2F) dT

S 1..n£ T

(3.7-5)

Similarly equation (3.7-3) may be replaced by

(T x curl i + V div i).d -f ((div F) 2+Icurl 112} dT + I.v 2  dr

(3.7-6)
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EXERCISES

Prove the following propositions.

3-22. If a vector point function T has continuous first derivatives throughout
the infinite region R bounded locally by the surfaces S .. n and has

specified values of curl and divergence in R, and if R2 171 is bounded as

R-., then F is uniquely determined in R, provided that either

(1) the normal component of F is specified at each point of SI..n

or

(2) 1.di is specified for each surface in turn and n x F is

specified at each point of the surfaces.

[Hint: If F1 and F2 satisfy the specifications, then F1 - F2 - grad V,

and V2 V = 0 outside S .. n. Write down equation (3.1-3) with V replaced

by V - V , where V is the value of V at some point of Z. Eliminate theo o

surface integral o:er E by shoving that as E recedes to infinity
(V-vo) LV dS+O.

3-23. If a vector point function F has continuous first derivatives and zero

curl and divergence throughout the infinite region R bounded locally by

the surfaces Sl..n, and if R21FI is bounded as R- , then F is zero in R,

provided that either

(1) the normal component of F is zero at all points of the surfaces

or

(2) 'P.CS is zero for each surface and n x F is zero at all points

of the surfaces.

3-24. If a vector point function F has continuous second derivatives in the

infinite region R bounded locally by the surfaces S .. n, and if V2 f is a

specified function of position throughout R then

(1) F is uniquely determined in R if F is specified at each point of

s .. n and if RIlI and R21VFI etc are bounded as R+-

(2) I is determined to within an additive constant vector if iFs

specified at each point of the surfaces and R2'VFxI etc are

bounded as R-.

3-25. If a vector point function F has continuous second derivatives in the

infinite region R bounded locally by the surfaces S., and if V2Y -0

in R, then

.i
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(1) F is zero in R if F is zero over the surfaces and if RijI and

R2 IVFxI etc are bounded as R-

(2) F is a constant vector in R if U- at each point of the

surfaces and R2 1VFxI etc are bounded as R3-.

-o00o-

Make use of equation (3.7-3) to verify the following propositions.

3-26. If F has continuous second derivatives in the region R bounded by the

surfaces S .. n and curl curl F is a specified function of position,

then curl F is uniquely determined in R by the specification, at all
points of the surfaces, of any one of the following factors:

(1) F (to within an additive constant vector)

(2) curl F

(3) n x F

(4) n x curl F
a

A further sufficient condition is the specification of n.curl F over

S .. nE. Prove this by showing that curl(Fj-F2) may be written as

grad V, where F1 and F2 are possible fields, and by demonstrating that V

is constant within R. (It is supposed that R is simply connected.)

3-27. If, in Ex.3-26., curl curl F is everywhere zero, then curl F - 0 in R

provided that F or curl F is everywhere normal to the surfaces, or

curl F is zero upon the surfaces, or F is constant upon the surfaces.

Further, if both curl curl F and div F are zero in R and F - 0 upon the

surfaces, then F is zero in R. (The latter proposition is a particular
case of Theorem 3.7-4.)

3.8 Green's Function
The Dirichlet and Neumann Problems

Let U be harmonic and let V have continuous second derivatives in the
closed region R bounded by the surfaces S l..nE. If a small spherical

surface of radius 6 is centred upon some interior point 0 of R, then it
follows from equation (3.1-2) that

n- - U n- dS + f - - U V] dS + U V2 V dT - 0

S I..n I S a T-T 6

Since U and V are well-behaved throughout a neiShbourhood of 0 the above
equation leads to
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A- - u k dS + U V2V dT - 0 (3.8-1)

S1..nzT

where f represents the limiting value of the volume integral as the 6
t

sphere shrinks about 0.

It has already been shown that if r is distance measured from 0, then

"4wV -f -V --( dS f " d, (3.3-3)

S I..n T

14
where the volume integral has the above limiting significance

On subtracting equation (3.8-1) from (3.3.3) we obtain

4wVo - ( [(+ )LV- -(U + )dS -f (U+ )V2V dT (3.8-2)

SI..nz T

If a point function U1 can be found which is harmonic in R and assumes

the value - 1 at each point of the surfaces S E.n2 , and if G1 - U1 + '
then equation (3.8-2) reduces to

4wV° - -fV"-dS - G1 V2 V dT (3.8-3)

S1..nE

There are physical grounds for supposing that U1 must exist for most

configurations of surfaces and positions of 0 1, and, this being so, it

follows from Theorem 3.2-4 that U1 will be unique in each situation.

Correspondingly, G1 is uniquely defined and tarmonic except at the pole
I0, where it becomes infinite as i; It is known as a Green's function for

Laplace's equation. It is seen from (3.9-3) that by means of this
function it has been possible to express the independent point function V

14. The 6 sphere may be replaced by any regular region of which 0 is
an interior point, as mentioned in the footnote to p. 178.

15. See Ex.3-28. to 3-30., pp. 209-10 and Kellogg, Ch.9

ii
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at any interior point of R in terms of V
2

V throughout R and V upon the
bounding surfaces - the normal derivative of V which appeared in (3.3-3)
has been eliminated. This result is not unexpected since the
considerations of Sec. 3.6 show that V is uniquely determined in R when

V
2

V is specified throughout R and V is specified at all points of the

surfaces. It will be appreciated that a different Green's function is
required for the evaluation of V at each point of R.

Now suppose that a harmonic function U2 can be found such that

3- -U2 + at all points of S_ a, where C is a constant.

3n 1 +~ C atal oit o n

It is clear from Theorem 3.2-1 and equation (3.4-2) that C = -4w/(total

area of S 1. ). Then if G2 - U2 +1 , equation (3.8-2) reduces to

a, eqain 382) rduce to .- 4
4,rV fG 2  dS - C V dS-f G2 V

2
VdT (3.8-4)

S 1.. nr S .. nE T

so that V is now expressed in terms of V
2

V throughout R and L upon the
0 an3f

bounding surfaces, to within an additive constant.

16
It may be shown that such a representation is generally possible , and
this might have been predicted on the basis of Sec. 3.6. The functions

aU 2

U2 and C2 are not unique since only an has been specified over SI.

If required, they can be made unique by the specification

SU2 dS - 0. A separate function is required for the evaluation of V at

S 1..nI

each point of R. Like G1 , C2  is known as a Green's function for
Laplace's equati'on; it is sometimes called a Green's function of the
second kind or a Neumann function.

The above considerations may be extended to the case where r recedes to
infinity and V, which is taken to be regular at infinity, is evaluated at
some point 0 outside the local surfaces Sl..n.

Since it is still possible to find an appropr.ate point function GC,

harmonic outside 0, zero upon S1 .. n and regular at infinity, the surface

integral over I may be eliminated in equation (3.8-2), while (3.8-3) is

replaced by

16. See Ex.3-31., p. 210.
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3G1
4rVo - - V - dS G1 V

2
V dT (3.8-3(a))

an

Sl..n T

where T includes all space outside S1..n.

Equation (3.8-4) is replaced, in similar circumstances, by

4rV - GG2 2 dS - f G2 V2 V dr (3.8-4(a))

SI..n T

The term which involves C is missing in equation (3.8-4(a)) because C -0

and Cf dS -4w as Z recedes to infinity; as a consequence, both

C f V dS and C V dS approach zero.

S I..S1..n

When V2 V - 0 in R, equation (3.8-3) reduces to

40V - - V - dS (3.8-3(b))
o an

S I..n E

This equation shows how a point function V, which is known to be harmonic
in R, may be computed from its boundary values alone (given G1 ), as would

be expected from Theorem 3.2-4. We now enquire whether, corresponding to
some arbitrary smooth distribution of surface values, there is a matching
point function which is harmonic in R. This particular existence problem
is known as Dirichlet's problem or the first boundary problem of

17potential theory It may, in fact, be shown that for most
18

configurations of surfaces the required function does exist , hence its
value may be computed via equation (3.8-3(b)). In particular: If f
denotes a point function which varies smoothly over each of the surfaces
S l..n, and if Gl(O) is a Green's function for Laplace's equation with a

pole at 0 and vanishing on the surfaces S I.nZ, then the formula

17. The specification of boundary values is known as the Dirichlet
condition. When the boundary value is everywhere zero the condition is
said to be homogeneous; othervise it is non-homogeneous.

18. See Kellogg, Ch.11. j
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4wUo - - a f G1 (O) dS (3.8-5)

S I..S1..nE

defines u at any point 0 of R in such a way as to make u harmonic inR
and take on the value f at every point of the bounding surfaces.

The allied problem, associated with the harmonic form of (3.8-4), may be
formulated as follows: "To find a point function v, harmonic in R and

taking on prescribed values g of upon S IE, given that g is
r Tnapn 1..n

continuous upon the surfaces and g dS - 0."

S I..1~..n•

This is the Neumann problem or the second boundary problem of potential
19

theory . The required function may, in general, be shown to exist, in
which case the solution is

4rv 0 1 G2 (0) g dS + const. (3.8-6)

S I..SI..n£

The Dirichlet and Neumann problems continue to be soluble when R
comprises all space outside the local surfaces S1 _n, the solutions being

represented by equations (3.8-5) and (3.8-6) with the surface integrals

over I and the constant deleted. No restriction is placed upon the value

of f g dS.

S1 .. n

3.9 Scalar Fields in Plane Regions

The earlier sections of this chapter have been devoted exclusively to
those scalar point functions which are defined throughout a region of
space. Similar analyses may be developed for point functions which are
defined only in a plane. A number of planar formulae may be derived as

in Ex.3-4., p. 181, by an application of the three-dimensional formulae
to a two-dimensional (xy) field in space with appropriate bounding

surfaces, and a subsequent cancellation of the common z factor;
alternatively, the formulae may be developed for a region in the plane ab

initio, as in Ex.1-31., p. 45.

19. The specification of the normal derivative upon the boundary is
known as the Neumann condition.



Sec.3.9) GREEN'S THEOREM AND ALLIED TOPICS 203

The planar forms of Green's theorem, (3.1-1) and (3.1-2), are

V -n ds = V V2 U dS + grad V.grad U dS (3.9-1)

r .. nr' S S

and

VV - U L ds - (V V2 U-U V2 V) dS (3.9-2)

rl..n r s

where rF..n are regular closed curves, none of which encloses or has a

point in common with any other, and all of which are enclosed by the
regular curve r'. S denotes the surface of the multiply connected region
R of the plane bounded externally by r' and internally by r1 ... n

Differentiation along the outward normal to the contour element ds is

denoted by -L; grad V S 3 V 11 V an 2V +
ax ay

2

The theorems relating to harmonic functions in bounded regions of space
have their counterparts for a region in the plane. The correspondence
continues to hold for unbounded regions so long as the line integral
around r' vanishes as r' recedes to infinity. We can ensure the

'i __V~ ds in this
disappearance of an integral of the type V 'Vn

a'

circumstance by stipulating that both V and R2 grad V should be bounded
in absolute value as R-, where R denotes distance from a local origin.
This requirement is somewhat lighter than that associated with three-

dimensional regularity at infinity because f ds increases linearly with R

while dS increases as the square.

The same requirement also serves to eliminate the line integral

£ (V-U) a•(V-U) ds which appears in the development of planar uniqueness

an'

theorems, but it is unnecessarily restrictive in this context since we
are concerned with differences rather than absolute values. Indeed, a
point function my increase without limit as R- and still submit to a
demonstration of uniqueness. Thus a planar harmonic function V may meet

L the specification

-a In 1 0 like 1 as R.-

m~ ~ ~ ~ ~ ~ ~~~~~~V R) nmunm~nnnm ••••••••~uum~l
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/- in 8,0 like as R-*

where a and 0 are constants.

If a function U satisfies the same conditions then it is clear that both

R(V-U) and R2 L (V-U) are bounded at infinity, so that

(V-U) _L(V-U) ds÷0 like R as R-

a'

despite the fact that both functions tend to a logarithmic infinity as
R--.

The planar form of Green's formula follows from a substitution of In -
P

for U in equation (3.9-2) where p is distance measured from the point 0
20at which V is to be determined0. When 0 lies within R the surface

integration is carried out over S-S6 where S6 is the surface enclosed by

a small circle21 centred upon 0. On taking limits as the circle shrinks
about 0 it is found that

2wV - L~(n 1) .YV - V= (in7 ) ds Vf (n)V2dS (3.9-3)

r I..n r, s

1
When 0 lies outside R, in - has no singularity within R and the surface

integration is carried out over S in its entirety. The right-hand side
of equation (3.9-3) is then found to be zero.

*11

20. It follows from equation (2.6-4) that In - is harmonic in the

plane for non-zero values of P.

21. The circle may be replaced by any regular closed curve; the
surface integral in equation (3.9-3) is consequently convergent.
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A substitution of unity for V leads directly to Gauss's integral for the
plane:

20 " ant ds (3.9-4)

r I.. r,

according as the origin of P lies within or without R.

When U is harmonic throughout R the addition of equations (3.9-2)
and (3.9-3) yields the planar equivalent of equation (3.8-2), viz

2V° U + in i n--- - V L_ + In ds U + In !)2V dS

rl..r's

(3.9-5)

If U can be so chosen as to make U - -ln 1 at all point of r r,, then1 I..n
U + in - defines a Green's function of the first kind in the plane with a

P
pole at 0 for the particular set of contours involved, and (3.9-5)
reduces to

2wV - - V -ds - G, V2 V dS (3.9-6)

rlI.. r, s

When V is harmonic everywhere outside r and V and assume
1..nan

appropriate limiting forms at infinite distance, it may be possible to
express V in terms of local line integrals alone, although GI itself

does not vanish at infinity. (See Ex.3-42. and 3-43. p. 213.)

It was shown in Sec. 3.5 that when V takes the form !.; + V' throughout a

neighbourhood of some point P in a three-dimensional region (where r' is
distance from P and V' is a well-behaved point function), the singularity
at P gives rise to the term t- in the expression for V

rp Po

(equation (3.5-3)). In the planar case a singularity taking the

parallel form a In L + w' gives rise to the corresponding term

a ln - .

0P
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3.10 Minimal Theorems

Theorem 3.10-1

Let VI and V2 be scalar point functions, vell-behaved in the closed

region R bounded by the surfaces S 1..n. If VI - V2 at all points of

the surfaces and VI is harmonic in R while V2 is not, then

f grad V1 12 dr < F Igrad V2 12 dr (3.10-1)

T T

Proof: Let VI - V2 - V'. Then from equation (3.1-1)

p VI f

V' 3 dS -U j V' V2 V, dT + F grad V'.grad VI dt
an

S ..n I T T

Since V' - 0 on S .. nI and V2 V1 - 0 in R it follows that

f grad V'.grad V1 dT - 0

T

or

f Igrad V1 1
2 dT - f grad VI.grad V2 dT

T T

Now

grad V'.grad VI - (grad V, - grad V2 ).(grad V, - grad V2 )

- Igrad V1 1
2 + Igrad V2 12 - 2 grad VI.grad V2

hence

J grad V'12 dT - f grad V11
2 d, 4 Igrad V2 12 dr - 2 grad V1 12 dT

TT T T

or

f lgra V1 12 
dT + f lgrad V'12 dT I / grad V2 12 dy (3.10-1(a))

T T T

I l

L. m u n ~ n
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Since V2 is not harmonic throughout R there will be at least some

subregion of R in which V2 (V1 -V 2 ) 0, ie div grad(V1 -V2 ) = 0.

Grad(V1 -V 2 ) cannot be continuously zero in this subregion hence

its contribution to f 1grad V'1 2 dT will be positive. The

contribution of the remainder of R to the integral must be positive or
zero hence the total integral is positive. This being so,
equation (3.10-1(a)) leads directly to the requirea inequality.

The result may also be expressed in the following way: If V has
prescribed values upon the surfaces SI..nE then

1 ýa V V\ + (8V'\2 + ( > d T

T

is a minimum when V is the solution of the associated Dirichlet
problem.

Theorem 3.10-2

Let F1  and F2 be vector point functions with continuous first

derivatives in the closed region R bounded by the surfaces S I..n, and

let div F1 - div F2  in R and (F 1 ), . (F 2 )n at all points of the

surfaces. If FY can be represented by W(grad V + u) where W, V and u

are well-behaved point functions, W being everywhere positive, and if

F1 X F2 throughout some portion of R, then

"f " dT - 2 jF.U dT j< - dT - 2 F2 .u dT (3.10-2)

T T T T

where F1
2 - IliI2 etc.

Proof: Since (f 1 -F 2 ).(Fj-F 2 ) - F1
2 + F2

2 - 2F1 .F 2

f I'i-•2 12 -fF d~f -F22 ~f
W dT " " -• - d + -- ' dT - 2 f F 2 .(grad V + u ) dT

T T T T

Now

div V(FI-F 2 ) - V div(F1 -F 2 ) + (Fi-F 2 ).grad V
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hence

fV(F1-7F2 ).dS = f V div(Fl-F 2 ) d¶ + f (•l-F2 ).grad V dT

Sl .. nZ z T

But (FI)n - (F 2 )n - 0 over S1 .. n Z and div(F 1-F 2 ) - 0 in R, so that

f (Fi-F 2 ).grad V dr - 0
T

or

Fi.grad V dT = F 2 .grad V dT

It then follows that

1f1-721
2  f 1

2  f f
w dUT = W dr + -d¶ - 2 f F2 .u dT - 2 F1 .grad V dT

T T T T T

orIf 1
2, f f fF___f __

dT - 2 F1 .u dT + f W dT 2 dT - 2 f a2 .u d
T T T T T

(3.10-2(a))

-- _ I~- 2 1
But (F I-F2 ) s U over some portion R, hence i pt1i2ve

Bu-(- W dT is positive;

equation (3.10-2) then follows from (3.10-2(a))

On putting W - I and u = 0, equation (3.10-2) reduces to

f F,
2 dT < f F2

2 dr
T T

From this inequality we deduce that if F has specified values of
divergence in R and of normal component upon S1..nE, then the volume

integral of F2  over R Is a minimum if V can be expressed as the
gradient of a scalar point function. This form of expression is

certainly possible when div F - 0 since the required scalar function
is then the solution of the Neumann problem for the particular set of
surfaces involved and the value of the normal derivative corresponding
to F

n
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EXERCISES

3.28. When heat flows through an isotropic medium of thermal conductivity k,
the rate of heat transfer in the positive sense through a geometrical
surface S within the medium is given by

dt - k grad T.dS
S

where T is the (scalar) temperature.

If q is a point function representing the rate of heat generation per
unit volume in the medium and p and c denote density and specific heat
respectively, show that at interior points of the medium

div(k grad T) + q - PC 3
at

Hence show that in a homogeneous medium free from sources (and sinks) of
22

heat , and under steady state conditions (ie temperature everywhere
independent of time), the temperature field satisfies Laplace's
equation, viz

V2 T - 0

233-29. A point source of heat of strength k is located at the point P in a
homogeneous isotropic imedium of thermal conductivity k. If the medium
were devoid of boundiag surfaces the heat flow would exhibit radial
symmetry; in the present instance, however, it is supposed that the
medium is physically terminated in the surfaces S .. nZ, and that heat is

extracted through these surfaces at an overall rate which balances the
heat input.

Assuming that the bounding of the system produces only a finite
perturbation of the radial flow field in some neighbourhood of P (it

being supposed that P does not lie in any surface), make use of the
arguments leading to equation (3.5-3) to demonstrate that the steady-
state temperature field corresponding to some fixed surface distribution
may be expressed as

T U'
rl

where r' is distance measured from P and U' is some harmonic point
function.

22. ie regions of generation (and extraction) of heat.

23. A source of unit strength is one which generates 4w units of
heat In unit time.
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3-30. Let the point source of heat in the previous exercise be now placed at
some interior point 0. The steady-state temperature distribution
becomes

T + U
r

where r is distance measured from 0 and U is harmonic throughout the
medium.

Show that for the particular case in which all points of the surfaces
are held at the constant temperature TV, the point function T - V' is
the Green's function G, appropriate to the surfaces SI 7 and the
pole 0.

3-31. A point source of incompressible fluid of unit strength is located at an

interior point 0 of a simply connected region R bounded by the surfaces

SI..nE. On the assumption that curl v - 0 in R, where v is the vector

velocity field of flow, we may write v - grad 0, where 0 is a point
scalar known as the velocity potential. If fluid is extracted through
the surfaces at the rate of 4r/(total area of S .. nE) per unit area per

unit time, show that the velocity potential of the resulting fluid flow
is a Green's function G2 , to within an additive constant, for the

surfaces S 2..nI and the pole 0.

[Note that this continues to hold when the Z surface recedes to
infinity, in which case the local surfaces are required to be impervious
to the flow.]

3-32. A point source of incompressible fluid of strength a, is located at an

interior point of R. At each point of the bounding surfaces S .. n
there is a prescribed rate of fluid extraction per unit area per unit
tine represented by the continuous scalar point function a1, the
overall rate of extraction corresponding to that of generation. The
corresponding velocity field, which is assumed to be irrotational in R,

is designated ;;"

This is repeated for source strengths 82, a 3 -- located at various

interior points of R with extraction rates 02, 03 -- and velocity

distributions v 2 , v 3 --. Show that when all sources are present

simultaneously, and the rate of fluid extraction corresponds with

01 + 02 + a3 -- , the velocity field is given by ;+ + + v 3 +

3-33. Let S be the surface of a sphere of radius a and centre T. If the point
0 lies within the sphere at a distance b from r, and if 0' is the point
inverse to 0 (is if TOO' Is a straight line and TO.TO' - 62) and if r is
distance measured from 0 while r' is distance measured from 0', show

that U - -ab' is harmonic throughout the sphere and has the value -br r
upon its surface, lence show by mans of equation (3.8-3(b)) that if
the point function V is harmonic within the sphere,
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- a2 -b 2  dS (Poisson's integral)

S

Show further that if 0 lies outside the sphere and V is harmonic outside
the sphere, then

S

whence

V Va vwhen V - V - constant over S.
o b a a

3-34. Find the Green's function G, appropriate to a pole at 0 in a half-
24

space at a distance d from the bounding plane S. Hence show on the
basis of equation (3.8-3(e)), where Sl..n is replaced by S, that if V is

a point function with continuous second derivatives throughout the half-
space and regular at infinity, its value at 0 is probably given by

v° . ! S -L i - 7 ,1 V V d T
a 2v 1, ? 4wdr

S

where r is distance from 0 and r' is distance from the image of 0 in S,
and where the region of volume integration extends throughout the half-
space.

Confirm the validity of this expression by evaluating the surface
integrals of equation (3.8-2) over a central circular disc in S and a
matching hemispherical cap which assumes a constantly increasing radius.
Hence show that the requirement that V be regular at infinity may be
replaced by the lighter requirement that V be bounded and Igrad VI.O as
R4-.

Show further that when V is harmonic the above expression represents the
limiting value of the expressions derived for V in the previous exercise
as a, b- and la-bl - d (constant).

3-35. Find the Green's function G2 for a point in a half-space, and so obtain

an alternative expression for V to that of the previous exercise,

assuming that V is regular at infinity.

24. is an unbounded region comprising all points upon and to one side
of an infinite plane.
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Ans: V L - Z T -dS + V2V dT

T

[It should be noted that the results of this and the previous exercise
may be derived by a direct application of equations (3.3-1) and (3.3-3)
to the point 0 and its image, bearing in mind that these points lie
respectively within and without the integration region.]

3-36. In equation (3.8-2). and in those equations which derive from it, it has
been supposed that V is continuous throughout the region under
consideration. Show that when a singularity occurs at the point P such
that V - a + U' in a neighbourhood of P (where r' is distance from P

r
and U' is a continuous point function) equations (3.8-3) and (3.8-4) are

replaced by

40V - - VG dS+[ ]p 4va- GV
2

V dT

S .. n 4 T

Vo-dS - C V dS + [G2 1 4wa

S1..nr S1..nT

where the volume integral has the same limiting significance as in

equation (3.5-3).

3-37. Since the value of Green's function G1 depends, for a given set of

surfaces, both upon the point of evaluation, say Q, and the position of
the pole 0, it is often written as GI(QO). With this notation, show

that GI(O',O) - G1 (O,0') ie show that the value of G, at the point 0'

for a pole at 0 and a given set of bounding surfaces (which need not

include I if G1 is regular at infinity) is equal to its value at 0 when

the pole is at 0'.

[Hint: Substitute GI(QO) and GI(QO') for V and U in equation (3.1-2)

and integrate over the region bounded by the given surfaces and two
small spherical surfaces centred upon 0 and 0', noting that G1 is

harmonic in the integration region. The required relationship is

obtained when the evaluation of the spherical surface integrals is
carried out for the limiting case in which these surfaces shrink
indefinitely about 0 and 0'.]

3-38. Derive equation (3.9-1) from (3.1-1) by an appropriate choice of
bounding surfaces in a two-dimensional field. Obtain the same result by
working directly from the planar form of the divergence theorem.

3-39. State and prove the planar counterparts of Theorems 3.2-1 to 3.2-7.
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3-40. Prove equation (3.9-3). Extend the analysis to cover the case in which
the excluding circle is replaced by a regular closed curve by applying

equation (3.9-2), with U - in 1, to the region of the surface bounded by

this curve and an interior circle centred upon 0, and showing that the
surface integral approaches zero as the closed curve shrinks uniformly
about 0.

3-41. Let a circle of radius a enclose a plane region R, and let 0 be an
interior point of R at a distance b from its centre. If 0' is the point
inverse to 0 with respect to the circle and p and p' denote distance

from 0 and 0' respectively, show that In 12 vanishes upon the circle.

Show further that in b-- is harmonic in R except at 0 by successively
ap

locating the origin of plane polar coordinates at 0 and 0' and making

use of equation (2.6-4) to evaluate V2 in 0' - V2 In p.

It is seen that In L_' is a Green's function of the first kind,
ap

vanishing upon the circle and with a pole at 0. Hence deduce from
equation (3.9-6) that if V is harmonic in R

.a 2 -b 2  VVo0 2wa ý Ids

p
r

where F represents the circle.

3-42. Let the point 0 of the previous exercise now lie outside R. Show that
in b-- continues to vanish upon F and that it is harmonic outside R

ap
except at 0, where it becomes logarithmically infinite. If V is
harmonic everywhere outside R derive an expression for V in terms of

line integrals around F and F', where F' is a closed curve which
embraces both 0 and F.

What limiting behaviour of V and grad V ensures that the line integral
around F' vanishes at infinity for finite values of b?

I~s 0 -b
2 -a2  r nv - V L h-) da

Ana: V° - d, + n W- n

r r

vanishes when Y .0 and R -. 0 as R-.V

R 3R

These requirements are satisfied if V and R2 lgrad Vi are bounded at
infinity.

3-43. Derive an alternative expression for V to that of Ex.3-42. by replacing

In bp' with In v-, where P" is distance measured from the centre of R.

Under what conditions does the integral &round r' now vanish at infinity
for finite values of b?
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Ans:
b2-a2 V bp') aVn ds

d " V ds + In' (a
r r rr

vanishes when V+O and (R in R) L.V-0 as R+-.

These requirements are satisfied if R V and R2 lgrad VI are bounded at
infinity.

3-44. If the more severe of the limiting conditions in Ex.3-42. and 3-43. are

imposed upon V, viz that VO and (R in R) .-0 as R-, it follows that

V may be expressed either aso

b,2 -a2 LV b2 -a 2 £;s 1 d
S O-a ds or 2wa i d-p- 2wa

r r r

In these circumstances V do must be zero.

r

Give an independent proof of this and show that a V ds - 0.
fr n'
rJ

[Hint: Evaluate the integrals of equation (3.9-3) for the particular
case in which 0 is located at the centre of R (and therefore outside the

region of integration), bearing in mind that an do = - d.d

r r'

3-45. Let the planar point function V be defined by V - in - where p' is

distance measured from some point P. If 0 is a point not coincident
with P and 0 is distance measured from 0 use equation (3.9-3) to express
V in terms of a line integral around a circle r of radius a centredo

upon P for the case a - pp, by showing that both the line integral at

infinity and the surface integral outside the circle are zero.

Hence prove that

f ln ds - ln - d - 2.s n1-

r r
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Now suppose that a > p p. By taking account of the singularity of V

which now lies within the region of integration show that

ln l ds - in = ds - 2aial-

r r

(cf Ex.3-19., p. 188).

3-46. Let the region R of the plane, bounded by the closed curves rl..n ,be
divided into a set of sub-regions by internal boundaries ra' b --- such

that a given point function g and its first derivatives are continuous
at interior points of the sub-regions but are discontinuous upon ra,

rb -- and let g, where defined, be everywhere positive or everywhere

negative. Further, let V be a point function having continuous second
derivatives in R except upon ras r --- , and upon certain lines r,

r --- and points P1 , P2 , --- lying within the sub-regions.

Show that V is rendered piecewise determinate, at least to within the
same additive constant, by the specification of all of the following
factors:

(1) div(g grad V) at all interior points of the sub-regions
excluding r , r --- P1 , P2----

(2) V or • at each point of rl. r', or g I- ds for any of

these contours together with the tangential derivative of V at
each point of the contour, or, in the case of a single bounding
curve, the tangential derivative alone. (If r1 .. r' comprise

lines of discontinuity, the expressions should be evaluated just
within R.)

(3) AV and A av'ý through all points of ra, --- r

(9 an1) a b ---~ B _

(4) V - V' + V" in a neighoourhood of P1 , P2 -- , where V' is an

individually specified discontinuous point function and V" is
any continuous point function.

This theorem also covers the case of a two-dimensional field in space,
whose bounding surfaces and surfaces of discontinuity are closed and
open cylinders with parallel axes, which, in combination with lines of
discontinuity, cut a transverse plane in the above contours and points;
for in these circumstances the conditions for uniqueness in the plane
necessarily lead to uniqueness in space. However, it should be noted
that the operators grad and div grad in the above context are of an
essentially planar nature, and that in thbse cases where g and V are
defined outside the plane with other than two-dimensional symmetry, it

4 is unlikely that the planar and spatial operations will lead to the same
result. (See Ex.4-29, p. 257.)
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3-47. Let the scalar point functions, W, V1 and V2 be well-behaved in the

region R bounded by the surfaces S I..n, with W everywhere positive, and

let F1 = W grad V1 and F2 - W grad V2 .

If div F, - div F2 at interior points of R and fFl.dS - 2 .dS over

each of the surfaces in turn, show that

J Wjgrad V11
2 

dT < Wigrad V212 dT

T T

when V, is constant over each of the surfaces in turn and V2 is not.

3-48. Extend the result of Ex.3-47. to the case where W is piecewise

continuous in R, V1 is continuous through the interfaces of the

sub-regions, and the normal components of F1  and F 2 are either

continuous or equally discontinuous through these interfaces.

Show that when the E surface is deleted the above inequality continues
to hold for integration over all space outside S .. n' provided that V,

and V2 are regular at infinity and W is continuous everywhere outside a

sphere of finite radius centred upon some local origin.

3-49. Show by means of Theorem 3.10-2, or otherwise, that the kinetic energy
of a mass of incompressible fluid bounded by the surfaces S I..n, and

having prescribed values of normal velocity upon these surfaces, is a
minimum when the flow is irrotational. (Kelvin's minimum energy
theorem.)

3-50. Let V be harmonic in the region of the plane outside r 1-n and let V or
3n be zero upon r_. Show that if, in addition, V/ln R is bounded

and R in R + Y)+0 uniformly in all directions as R-,. then V is

zero everywhere outside r1--n'



CHAPTER 4

UNRETARDED POTENTIAL THEORY

4.1 The Scalar Potential of Point Sources

Let the scalar magnitudes al--ai--an be allocated respectively to the

fixed points Pl--Pi--Pn. Then with each position of a variable point 0,

not coincident with P1 , P2 -- , we may associate a scalar potential 0o"

defined by1

n

i-I

It is seen that # represents a single-valued scalar point function having
continuous derivatives of all orders wherever it is defined. The points
Pl, P2 -- are known as the sources of the potential, and al, a2 -- are said
to be the strengths of the sources.

If r is chosen to denote distance measured from 0, as in previous

sections, then 1 continues to define a unique scalar field for any given
r

position of 0, and we may write

1. The particular potential function here defined for point sources, and
later extended to distributed sources, is known as a Newtonian potential.
There is another type of potential which is defined only in the plane and
is known as a logarithmic potential. For point sources this is given by

n

- " a ln-

i-i

It is shown in Sec. 4.2 that the logarithmic potential of point sources Is
related to the Newtonian potential of certain rectilinear source systems of
infinite extent.

As used in this document the word 'potential', when unqualified, implies
'Newtonian potential'.

217
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n

o Z a (4.1-1(a))0 PI
i-i

Again, we may define a set of scalar point functions typified by rL"
ri

where r' is distance measured from Pi, so that

n
i-

0

The fields defined by and 7 are quite distinct, but have the common
r ri

value -i when evaluated at P and 0 respectively.

The following related notation will also be adopted.

()Pi .OP"(!) ,

A single point source is called a monopole or singlet. Certain
combinations of monopoles are known as multipoles; of these the simplest
is the dipole.

0

+a

-a
P

Fig. 4.1

In Fig. 4.1 point sources of strengths -a and +a are located at P and P'

respectively, where PP' - I - 1 1 . If P' is allowed to approach P
AO 0 0

along the fixed direction -10, and if the source strengths are adjusted
.

4 -_
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to maintain al constant during the operation, then the limiting

configuration as 1 -0 and a- is said to constitute a dipole2 at P. The

product al = p is known as the scalar moment of the dipole and-o .-(1) 0
a p the vector moment.

From equation (4.1-1(a)) the potential at 0 of the point sources at P and
P' is given by

-a ( + ap

and this may be expressed as

SI~c?) 'O)) --
-aIp 0 d d.12o r

12 + -I

o(d~lo0( ))p I 21 d ri• 1- i(- I +•= al•~ Q +---

where A -spatial rate of change in the direction 1o.
0

The dipole potential at 0 is consequently given by

O p k(dlio( h .o, .
If the strengths of the point sources comprising the dipole were to be
reversed in sign the potential at 0 would likewise be reversed in sign;
if the dipole were moved without change of orientation to some point P"

SA
where PP" - l1 - 11 11 its potential at 0 would become

It follows that a pair of dipoles, one with reversed sign at P and the
other translated to P" without reversal, give rise to a potential at 0 of

2. This is sometimes referred to as a 'point dipole' or 'doublet', the term
'dipole' being reserved for the non-limiting configuration. For the sake
of uniformity of nomenclature 'dipole' will be used in this section with
the connotation 'point dipole'; in the later sections it will be replaced
by 'doublet'.
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Fig. 4.2

This yields a dipole potential at 0 of

po~) 0 R cR
3  

(R

or (4.1-7)

o0 P- P)

where r' is distance measured from P,

and an axial quadrupole potential of

(2) 1 (2) 3(-z')2 . (2) (3 cos 26-1)
oaxial 21 1 RS R-J 203

It is seen that R and 6 are spherical coordinates of 0 in a system
.t A

centred on P with 0 and z aligned. The angular coordinate 4 is missing

because the potentials are axially symmetrical about z

By treating the monopole as a Multipole of order zero and identifying
(0) (0) (1) (2)p(3) with the strength of the monopole, the sequence # axial

axial --- is brought into the form

"(0) p ( ) "OA p(2) (3 cos29-1) p(3) (5 cos36-; cog 9) (4.1-8)
R2, 2R3 2R" •

The student of Legendre functions will recognise the general term of the

sequence as

3. Since r currently denotes distance from 0 we will henceforth represent
spherical coordinates by R, 0, 0.
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o(m) p P (cos 6)
.Rm+1 -(4.1-9)

where P (cos 0) is the ith degree Legendre polynomial in cos 6.

These polynomials appear in the solution of Laplace's equation in
spherical coordinates and usually defined by

P m(Cos 6) 1 d m (cos 28 -1 )m (4.1-10)

2ima! d(cos 8)m

but the above treatment leads to an alternative definition:

P(Cos 6) . 1(rm+1 (1))p (4.1-11)

where r is distance measured from an arbitrary point 0 and P is any point

such that the angle between PO and z is e.

lPm(Cos 0)J cannot exceed unity. This is evident for the first few

orders when written out in the following way.

P (cos 6) - 1

P1 (cos 8) - cos e

(4.1-12)I I
P2 (coS 8) = 1 (3 cos 2 e-1) = (3 cos 26 + 1)

2 4

P3 (cos O) 1(5 cos30-3 cos e) - (5 cos 36 + 3 cos 6)

The subject of Legendre polynomials will not be pursued further within
this context. For the general expansions of non-axial multipoles the

interested reader is referred to Stratton4

We now proceed to determine the potential at 0 of a distribution of point

sources in a neighbourhood of P. Let i be the position vector of P

relative to P and let 0 be the angle between a and R (Fig. 4.3).

4. "Electromagnetic Theory", Sec. 3.12
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P.

p.

0

Fig. 4.3

As before, r is identified with distance measured from 0. Then from

equation (1.2-9), with V replaced by 1 and As replaced by si, we have

- + (;. )+ 1, ! + (4.1-13)
11P i 0P p 2!p

or

1 + Sx + z

P i IP P P

2+ 2  (;)) + 1 (,z2 (4.1-14)

2 132 P y a P 2P Z(f))_, 1+) + 2~.. ri L\ 14))

+ sisi + s i s i +ia si s8

x y P x z P y z r

and

n
#o=R at + xs 3/"

n n

+ 32p

/+ al 2s (32 + . .. + !'as + -
a/ P a I +

2 i 1l i-I

I.
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The first term of (4.1-15) is seen to be identical with the potential
n

at 0 of a monopole of strength a i at P. The three terms within

i-I

the first pair of brackets correspond to the potentials of x, y
n n

and z - aligned dipoles at P of scalar moments L ai i a 1 5

x / , y

i-1 n i1

a a Since the three terms may be replaced by aj .(t ,i z P

it follows from equation (4.1-2) that the individual dipoles may be
n

replaced by a single dipole of vector moment a1 Si. This vector

i-I

quantity is said to be the dipole moment or polarisation of the complex
relative to P.

The second derivative terms within the second pair of brackets in
equation (4.1-15) correspond to the potentials of axial quadrupoles of x,

n n

y and z alignment at P and of moments a s2, 1 2 a, s12 and
T, x , y

n i-1 i=Z ai si2 . The cross derivative terms correspond to rectangular
S~i-I

quadrupoles in the xy, zy and yz planes having moments

n nn

2 a, a, a, ~ 22 ai ,s i and 2 jais 8ysi82
alSx Sy Sx 2y z

i-I i-I i-I

It is clear that further terms in the expansion can be related to higher-
order multipoles at P, each of which will derive from a pair of
multipoles one order lower and displaced along one or other coordinate
axis through P.

Expansion of equation (4.1-14) yields

. +-i + +• 3 R . a +--1 , 2.'s
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or

- + to + -2, (3 ... 2871) + -

ie

_o 1 (s P (cos 0i) (4.1-16)

M-0

The series is convergent for s <R. It follows that the associated series
for #0. viz

n n n

4o i ai +i a i cos a + ai s12 (3 cos 2 i-) +---

i-1 i- i i-I

(4.1-17)

is likewise convergent provided that 0 is an exterior point of some
sphere which is centred upon P and contains all of the sources.

The relative magnitudes of the various terms depends upon both the
distance of 0 from the source complex and the nature of the complex
itself. When all source strengths are of the same sign the first term
predominates and relative to this term the following terms fall off at

least as (Si /R), (sa 2  /R 2 ) --- where si is the greatest value of
max max ax

si. When the total source atrength is zero the first term vanishes and

the second term may or may not predominate. In this case the value of
the second term may be shown to be independent of the position of the
datum point P from which s is measured. When the total source strength

is not zero the second term may be made to vanish by locating P at the
source centre (see Ex.4-5. p. 231).

4.2 The Scalar Potential of Line Sources

Let X be a finite, piecewise continuous scalar function of length of arc
a measured from one end of a regular curve r (or from some specified
point of the curve if r be closed). Then the associated scalar potential
at any point 0 outside the curve is defined by

A[
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00 1 r ds (4.2-0)

r

5
where r is the distance of ds from 0

r is said to comprise a line source of potential, whose local density or
strength per unit length is X.

The simplest form of line source is rectilinear and of constant density.
Consider such a source AB of density X and length 2c, lying in the z axis
through the origin of coordinates and bisected by the origin (Fig. 4.4).

A

ds
r

0 0

YY

x

B

Fig. 4.4

5. The integral is, of course, shorthand for

n

L-m As
U4m  

E \r/) iAs..O i
i i- 1

where P, is some point of that element of the curve whose chord is of

length As i. (See Sec. 1.5).

io
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If the z coordinate of a source element is represented by • and the
cylindrical coordinates of 0 are P, 0, z, then

+c

0 = X / dC
-o -C {p2+(.-z)2}d

- X fin((-z)+((;-Z)2+p2)i}]+c
-C

or

c - z + R1

0 X XIn -c - z + R2 (4.2-1)

where

R1 OA and R2 - OB

Now

R12 - 2 + (c-z) 2  and R2
2 - p2 + (c+z) 2

hence

R22 - R1
2  " 4 cz

Substitution for z in equation (4.2-1) yields

0 RI + R2 + 2c

R+R 2 + 2c (4.2-2)

As 0 approaches any point of the source, RI + R2. 2c and the potential at

0 approaches a logarithmic infinity. This is also seen to be true for
the general case of a non-rectilinear source of variable density so long
as r is smooth in a neighbourhood of 0, for it is possible to divide the
curve into several portions, one of which is a small element which is
virtually straight and of constant density, intersected by the normal
through 0 and approached continuously by 0. By the above analysis the
potential associated with this segment is 'ogarithmically infinite at the
segment; this must also apply to the potential of the complete source.

An immediate consequence of equation (4.2-2) is that the equipotential
surfaces of a uniform rectilinear source comprise confocal ellipsoids of
revolution, since for such surfaces

I
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RI + R2 + 2c

Rj +R2- 2c - k (const)

whence

R1 + R2  - 2c (k + 1) (4.2-3)(k - 1)

A binominal expansion of equations (4.2-1) or (4.2-2) for the particular
case fzjcc and o<c-jzl yields

4(c• 2c2+3z2 
-2 + !2 4)

4o . In + 1+2 + U 3' 4 +--

p2 c2 z 2  2c 2  - c2½

As p.0O,

40+Xin 4 p (4.2-4)

and as c- with finite values of p and z

ln 02 - 2A(ln 2c-ln p) (4.2-5)

It follows that for an infinite uniform rectilinear source the potential

is logarithmically infinite at all finite distances. Again, for z2 <<c 2

and p0<<c
2

(an-2- and ( - -2 (4.2-6)
S azo o7 a

hence as c.-, the first and second axial derivatives of # approach zero
for any given finite values of z and p. The scalar potential field is
therefore two-dimensional at finite distance from the origin of
coordinates and is, of course, symmetrical about the axis defined by the
source.

If several parallel rectilinear sources of equal lengths and densities
At1 , A2 -- are present, each being bisected by the xy plane through the

origin of coordinates, the limiting value of * as c- becomes
*0

*o - 2 ,x in 2c - 2 Xi ln P (4.2-7)

m is c i-I

where PIie the normal distance of 0 from the ith line source.
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n

When L A, - 0 the logarithmically infinite component of the potential

i-i
vanishes and

ýo = -2AI In p, - 2X 2 in P2 --- (4.2-8)

The same result would have obtained for any plane regiun normal to the
line sources had the points of intersection of the line sources and the
plane been treated as point sources of logarithmic potential of strengths
2AI, 2X2 --- as referred to in the footnote to p. 217.

However, in the latter case equation (4.2-8) would continue to represent
the potential at infinite distance whereas in the three-dimensional case
the expression holds only at finite distance from the sources. Unless
the total source strength is zero the logarithmic potential in the plane
does not vanish at infinity but becomes logarithmically infinite.

A planar uniform rectilinear doublet is the limiting configuration of two
parallel uniform rectilinear sources of equal lengths and equal and
opposite line densities, ±X, whose centres are displaced transversely by
a distance d, when d-o and X-, in such a way as to maintain Xd constant.

0

P d P'

Fig. 4.5

In Fig. 4.5 uniform, parallel line sources of strengths -A and +1 are
bisected normally by the plane of the paper in P and P'. If the length
of each source is 2c and p2.c<c 2 then

40 f -2X In 2c + 2X In p + 2X in 2c- 2X In p

S 2X lny
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As d-0,

1 - d cos

and

*-2X in I + d cos 00 P j

whence

2Ad cos 0

Hence at non-zero and finite distance from an infinite uniform
rectilinear doublet (or at all non-zero distances in the plane from a
doublet pair of logarithmic point sources of moment 2Ad)

o 2d cog 0 (4.2-9)

The equipotential surfaces defined by (cos 0)/p - const comprise circular
cylinders which contain the source and are bisected by the half-plane
* - 0 or 0 -.

The rectilinear line doublet under consideration may also be treated as
the limiting case of a set of co-planar dipoles aligned normally to their
line of centres where the number of dipoles per unit length increases
without limit while the individual moments approach zero in such a way as
to maintain the total scalar moment per unit length constant and equal to
6

Ad . This approach can clearly be extended to the more general type of
line doublet which may be curved, non-planar and of variable density;
indeed, such a source is best defined in terms of a linear distribution
of normally aligned point doublets. It therefore follows from (4.1-2)
and (4.1-7) that the potential at 0 of any regular line doublet which
does not contain 0 may be expressed as

o " L -L- ) ds (4.2-10)

where L - L n' is the transverse vector dipole moment per unit length of
contour.

6. Similarly, the simple line source, characterised by the piecewise -
continuous density A, is equivalent, at exterior points, to a limiting
configuration of point sources upon r of strength A per unit length. For
this reason we may refer to it as a line singlet.
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EXERCISES

4-1. The potential at 0 of a dipole of vector moment p(i at P is given in
equation (4.1-2) as

(1) (1)Q ()

where r is distance measured from 0.

If r' is distance measured from P show that

[In this connection see Sec. 4.6.]

4-2. Prove the equivalent relationships:

Q!
m)) m m

a- ((X -x') 2+(yO-y') 2+(zO-z )2}- i (-I)M-i {(Xo -xi) 2+(yo-y9)2+(Zo-zv)2}-i
3zm o oz m

4-3. Derive equation (4.1-16) by expressing OP in terms of si, R and cos ei

(Fig. 4.3), and expanding OL in a binomial series on the assumption

that R is sufficiently large to make the series absolutely convergent.

4-4. Expand =') about(\71,) in Fig. 4.3, where ri' is distance measured

from Pi. Hence show that when R < i

OP R 1 PM(cos e)

0 mO
m-0

4-5. So long as the total strength of a system of point sources is zero the
polarisation (dipole moment) of the complex is independent of the datum
point from which it is computed. Prove this, and show further that when
the total source strength is not zero the position vector

- -



232 FIELD ANALYSIS AND POTENTIAL THEORY

-G j ai s a

i-I i-i

relative to the (arbitrary) point P defines a point G which is fixed in
relation to the complex and about which the polarisation is zero. [G is
known as the source centre. It corresponds with the centre of mass in
mechanics except insofar as charge magnitude may be positive or
negative.]

4-6. If the point 0 lies at a distance R from the source centre G of a point
source system, show that

0 Z a + 3 i (A+B+C-31) + ---

i-I

where A. B and C are the second moments of the source strengths about
three perpendicular axes through G, and I is the second moment of the
source strengths about the axis OG. (MacCullagh's formula.)

4-7. Show that the terms within the second pair of brackets in
equation (4.1-15) are equal to the potential at 0 of three oblique
quadrupoles located at P and lying in the xy, yz and zx planes, with
constituent dipoles orientated parallel to the x, y and z axes

respectively.

4-8. Use equation (4.1-17) to prove that the potential of a collinear set of
sources of strengths -a, +3a, -3a, +a and equal spacing d becomes

identical with that of an axial octupole of moment p(3) . 6ad
3 

when ad
3

is held constant as a. and d+O.

This demonstrates that am axial multipole - or its equivalent - may be
generated by a single limiting process rather than by a series of such

processes. Show that this is also true of a rectangular quadrupole by
expanding the potential of an appropriate four-source system in a Taylor
series.

4-9. The potential of a system of logarithmic point sources in the plane may
be expanded about an arbitrary origin in a manner similar to that

developed for the Newtonian potential in the corresponding three-
dimensional problem. Thus if Fig. 4.3 now describes the relative
positions of the typical logarithmic source Pi of strength 2i,. the

point of obse:vation 0 and some point P in the vicinity of P where

PPi < PO, show that

n R 1 2R 1 3
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and

n n

o - 21A In R + S2A i cos i + 2--I 7 2A 8 2 cos 28

[Hint: The factor jII - RCos a+ RI may be written a

S'l I-I _Jai

{1 -j•- e+jlt j -- • eJii where j * v-i so that

in - -- cos i÷ may be expressed as the sum of two convergent

series provided that si < R.]

4-10. If a system of parallel. uniform, rectilinear sources of equal length 2c
and densities A,, A2 --- are bisected normally in the points P1 , P2 ---

by the plane of the previous exercise, show that 0 is given by the
/n

previous expression increased by 2 A in 2c when c, provided

that PO is finite.

4-11. Derive equation (4.2-9) from (4.1-7) by treating the line doublet as an
infinite set of transversely orientated point doublets of moment Ad per
unit length.

4.3 The Scalar Potential of Surface Sources

Let o be a finite, piecewise continuous function of position upon a
surface S. Then the associated scalar potential at any point 0 is
defined by

* - dS (4.3-1)

S

where r is the distance of dS from 0.

S is said to comprise a surface source of potential, of local surface
density (or strength per unit area) o.

# is seen to be finite and continuous at all points outside a bounded
surface because r is non-zero for each surface element, but it is not
immediately apparent that # will be finite upon the surface itself
because the Integrand is infinite at 0 and the integral is consequently
Improper. It can, nevertheless, be shown that the potential integral is
both convergent and continuous at all points of a smooth surface,
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including those points where o is discontinuous ; the treatment,
however, Is best postponed until similar proofs have been presented in
connection with the potential of a volume source. (So* Ex. 4-16.
and 4-17., pp. 242-3.)

Meanwhile we my show, by plausible argument, that the potential is
convergent upon the surface and continuous through it at those points
inside the boundary where the surface is smooth and o is continuous. For
this purpose we first examine the potential distribution along the axis
of a circular disc of constant density a, centred upon the origin of
coordinates and lying in the xy plane. If the radius of the disc is a
and the coordinates of 0 are (O.0,z) then

a
4 0 2wodp (02_x2.ty2)

0 (p2+z2)i

or

o0 2so (a 2 +z 2 )1- (z2) 1 (4.3-2)

As z approaches zero through positive or negative values, #o approaches

2woa, and this value of the potential obtains upon the surface itself,
the integral being no longer improper for z - 0 when dS is written as
2vpdp. The potential is therefore continuous through the disc along the
central axis.

Now suppose that 0 lies close to a smooth, curved surface source of
variable density. If the normal to the surface through 0 meets it in
some interior point P and a circle Is drawn on the surface about P, it
will. if sufficiently small, define a sensibly plane disc of constant
density. The potential at 0 is the sun of that associated with the disc
and that associated with the remainder of the surface. The latter is
continuous at 0 since the distance of each source element exceeds some
non-zero value; the former is continuous through the surface at P as
proved above. The total potential is therefore continuous through the
surface at interior points, and, being continuous tangentially at points
just outside the surface, is likewise continuous upon the surface itself.

The surface source presently under consideration is said to comprise a
asimple layer . As a source of potential it is seen to be equivalent. at

least at points off the surface, to the limiting configuration of a
smooth distribution of singlate (point sources) whose number per unit

7. The result is even more general than this. For the continuity of
potential at a conical point, a cusp and a point of intersection of a
finite number of surfaces, see f. and B.S. Jeffrey., loc. cit., Ch.6.

S. Or 'single layer', as distinct from the 'double layer' introduced below.
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area of the surface is increased without limit, and whose individual
magnitudes approach zero in such a way as to maintain the total source

9
strength per unit area at any point equal to a

There is a second type of surface source known as a surface doublet,
doublet shell or double layer. This comprises the limiting configuration
of a smooth distribution of point doublets orientated normally to a
surface, when the number of doublets per unit area of the surface is
increased without limit while the individual doublet moments approach
zero in such a way as to aake the total scalar moment per unit area, t,
some specified, piecewise continuous function of position on the surface.
W is known as the surface density, or, if constant, the strength of the

10
shell . The term 'double layer' derives from the equivalence of a plane
doublet shell and two plane simple layers of densities ta and spacing d,
when the product ad is maintained equal to U while o- and d-O. Although

the equivalence fails when the surface is curved , we will continue to
use the terms interchangeably.

The potential at an exterior point 0 of a doublet shell S may be written

down directly by substitution of UdS for p(I) in equations (4.1-2) or
(4.1-7). We obtain

" p d •( dS (4.3-3)

S S

or

*0 -r dds jfd92 (4.3-4)

S

where dil is the element of solid angle subtended at 0 by dS.

It is seen that u must be taken as positive or negative according as the
positive sense of motion through the surface corresponds with that of the
doublet orientation or not.

When the shell is uniform (is of constant density) these equations reduce
to

9. For this reason we may also refer to the source as a surface singlet.

10. The term 'strength' is more appropriately reserved for simple

"sources, where it signifies s &V rA ds, a dS, etc.

i1. See Ex.4-12. and 4-13., p. 241.

lI



236 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.4.4

0 V f3n (71) dS -- (4.3-5)
S

It then follows from equations (3.4-1) and (3.4-2) that for a closed
uniform doublet shell the potential at 0 is zero or -4wu according as 0
is an exterior or interior point of the closed region of space bounded by
S. There is consequently a discontinuity of potential of 4vu on passing
through the surface at any point in direction of the positive normal.

The same expression holds for the discontinuity of potential which
obtains at non-boundary points of any smooth surface doublet of
continuously variable density if u is identified with its local value.
This follows from a consideration of the contributions of a surface
element to the potential at adjacent points on either side of the
surface. Suppose that these points lie upon the normal to the surface
through an interior point of the element. Since the element, if
sufficiently small, may be treated as planar and of constant density, the
associated partial potentials are seen from equation (4.3-5) to approach
±2wu. That component deriving from the remainder of the surface must be
continuous through the surface along the normal since all elements are
removed by more than some non-zero distance; the limiting values of the
potential, as the surface is approached along the normal on either side,
accordingly take the form *' - 2wu and #' + 2wA, where 1i is the local
surface density.

4.4 The Scaler Potential of a Volume Source

Let P be a scalar point function1, finite and piecewise continuous
throughout a finite region of space T. Then the associated scalar
potential at any point 0 is defined by

S= f E dr (4.4-1)Jr
T

where r is the distance of dx from 0.

T is said to comprise a volume source of potential whose local density,
or strength per unit volume, is p.

The potential is clearly finite and continuous at exterior points of r,
but at interior and boundary points the integral becomes improper because
the integrand is infinite at 0. In this case the value of the integral
is taken to be

12. There will be no cause to confuse this with the cylindrical
coordinate P.
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Lis 2 dT (4.4-2)

d-O r
T-TI

where rI is a regular region of which 0 is an interior point and d its
maximum chord.

It is required that the limit be independent of the shape of T1. To show

that such a limit exists we make use of Cauchy's criterion 13, which, for
the present purpose, may be stated in the following form: Let T6 denote

a sphere of radius 6 centred upon 0, and let T, and T2 be any regular

regions contained by T6  and having 0 as an interior point. Then the

integral is convergent if, for any positive number c, a value of A can be
found such that

dr dr < C for 0 < 6 < A (4.4-3)

-T T T-T2

Since the region of integration outside T6 is common to both integrals,
equation (4.4-3) may be replaced by

f r - f- dT < C for 0 < 6 < A (4.4-3(a))

S6-TI 6-T2

The existence of A may be demonstrated in the following way.

Because p is finite throughout the closed region T

f dr IPmax j
/ ~r'd

T6-TI -6-.1

where W Imx is the greatest numerical value of p in T.

If, now, dT is written in spherical coordinatts as r sin e df r de dr the
integral on the right hand side of the inequality ceases to be improper,
so that we have

6 w 2w

f j d f r sin O df de dr -262

T 8T a 0 0 10

13. Kellogg, Ch. 6.

I -
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whence

SdT < 2w62 10[1f r m,6 1 ax
Ta-TI

The same relationship holds for integration over T 6 -T 2 hence

f d -, f d- < 41r62 10!
T6-T1 T 6- T2

in which case equation (4.4-3(a)) is satisfied when A x

The integral E • dT is therefore convergent.
Jr

Since it has not been required that p be continuous, the analysis may
also be applied to boundary points of r by treating these as interior
points of an extended system where p passes discontinuously to zero.

We now proceed to show that # is everywhere continuous.

T Tý

TA TC TB

Fig. 4.6

Let 0 and 0' be interior points of t of spacing less than 6 and let
spheres of radius 6 be centred upon each (Fig. 4.6). If the regions
enclosed by the spheres are denoted by T6 and t' then T 6 . TC + - At

it6 I -C + B where iC is the region common to both, and TA and TB are

respectively subregions of T6 and T' alone. Let r be distance measured

from 0 and r' distance measured from 0'.

Then

f d, r, f d, f ,
T TT T6A B
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1 1 1 1At interior points of T A' j > 6'and at interior points of TB, 6'
hence

1 dt- dT > 0

r r
Tr6 "T-6

since T A - T".

But from sylmetry

dr dT
6r6

so that

F >d L d, (4.4-4)

T Tr6 r6

If (#0 ) T and (# ')T represent the potentials at 0 and 0' associated

with source elements within TV then

0 - f 6 dr < 6l,,+f dr

and

I(4of -6..,r d 1, dr < I, FI,..,, !

T6 T6

Hence

'*'T 0 T ax

in which case

~ 3c when 0 < 4.5

where t is any positive number.
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If (O ) TT and (O ') T- represent the potentials at 0 and 0' associated

with source elements outside T6 , then

(-,,0,,_)8- f (0- )f dd P - f P( L ) d
T-T 6 0 8 a.-r.

hence

(41 T- -( T1I- .r a -r'

Now - assumes its greatest value when the source element lies just

outside T and is in line with 00', in which case it is equal to

d/6(6-d), where d - 00', so that

1(# 0')1-T - (4 0) T-T[ I -, 11. 6(6-dd) (-

whence

l _ -# ) for 0 < d S I + 3 8pIe6 (T-%)/Ca (4.4-6)

If, then, some given 8 satisfies equation (4.4-5) and, for this value of
6, d satisfies equation (4.4-6), the potentials at 0 and 0' of all source
elements are such that

SI (4 .1)T-(40) 1 T • C

It follows that # is continuous at 0.

For reasons discussed previously the analysis remains valid at boundary
points of r.

At exterior points the result follows immediately from the inequality

) f 1 j dt-r fe dT < I0Ima
T I

since 1nd are finite for all source elements and IL a s0

001-0.

It has been supposed in the foregoing treatment that the region of
integration Is bounded. This does not imply that p is necessarily zero
outside r but that our concern Is with that potential function which

derives from sources within r. The magnitude of the source density at
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exterior points is consequently irrelevant and must be equated to zero if
it is necessary to extend the region of integration while maintaining the
original source system (as in the above treatment of boundary points).
We may equally well deal with unbounded source systems so long as the
inclusion of all source elements does not lead to infinite values of * at
all finite distances from some local origin as would be the case, for
example, if p were everywhere constant. It may be shown that if R is
distance measured from some local origin, and R' is finite, then * is

everywhere finite provided that, for some value of n > 2, p[ Rn is
bounded for all R > R'. While this is a sufficient condition it is not a
necessary one, and a patchy distribution of source density may admit of a
lower value of the exponent.

A singular point at which p becomes infinite has only a finite effect on
the potential at points outside a neighbourhood of the singularity
provided that the rate at which p approaches infinity is suitably
restricted. Thus if r' is distance measured from a point singularity P,
then the total source strength associated with a neighbourhood of P

remains finite if foIt' n is bounded throughout that neighbourhood for
some value of n < 3. For a line (or surface) of finite extent upon which

p becomes infinite the corresponding requirement is that IpIrn be
bounded for some value of n < 2 (or <1) where r' is distance measured
normally from the line (or surface). Moreover, an additional restriction
upon the rate of growth of p may allow # to be both finite and continuous
at the singularity itself. (See Ex.4-20., p. 244).

EXERCISES

4-12. Let S be an open or closed doublet shell of variable density U whose
surface coincides with a part or the whole of a sphere of radius R, and
whose vector dipole moment is directed out of the sphere. Show that, in
respect of potential, the shell cannot be replaced by the limiting
configuration of simple layers on spherical surfaces of radii R and
R 4- 6R having equal and opposite densities along any radius and such
that

Limo 6R -

6R,0

What potential is associated with such a system?

Ana 1A dS+ -
Ama * i n 1) R

S S

4-13. Show that the values of surface density required for the equivalence of
the double layer and doublet shell in the above exercise are

a - . and a " +-h where 6R+O.
dR dR fS
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4-14. Make use of equation (4.3-2) to establish the value of the potential
along the axis of a disc-shaped double layer of radius a and uniform
surface density P, centred upon the origin of coordinates and lying

A
within the xy plane with the dipole moment directed along z. Confirm
that # +2wu or -2ru according as the positive or negative side of the
double layer is approached along the axis.

(s2)1 (z2 )1 - a+z2)i

4-15. If f and g are point functions which become infinite at some point 0 of

T, but are plecewise continuous with If IJg in any region not containing

0, then f f di is convergent when f g dT is convergent.
T T

Prove this.

[Hint: Construct spheres of radius 6 and 26 about 0 and let T1 and T2

be regular regions contained by the inner sphere. The region T3 has 0

for an interior point and is contained by both T1 and T2.

First show that

f f
T 6-T3

and then proceed to the inequality

f f dr - f f dr < E for 0 < 6 < ]

4-16. A tangent plane is drawn through a point 0 of a smooth surface S. A
cylinder of radius a whose axis coincides with the normal to S through 0
cuts S in the region S 1 and the tangent plane in the region S1 '. If a

is sufficiently small the normal at any point of S1 makes an angle e of

less than 90* with the normal through 0. Let a' be a point function,
defined upon S1', and equal to a/cos e where a is the source density at

the corresponding point (by axial projection) on S 1 . Form the integrals

2 dS and d3t
r h te

where r and r' are respectively the distances of dS and dSt from 0.
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By modifying the result of the previous exercise to apply to surface

integrals show that f S dS, and consequently S dS. is convergent at

S1 S

0.

4-17. Develop the planar analogue of the analysis which establishes the
continuity of the potential function within a volume source, and so
demonstrate that the potential of a plane surface source of piecewise
continuous density is continuous at all interior and boundary points of
the surface.

4-18. Show (a) by direct integration

(b) by utilising the results of Ex.3-19., p. 188, that the
potential of a uniform spherical shell of radius a, thickness
At and source density p is given by

(1) R at points outside the shellR

(2) 4rapAt at points inside the shell

where R denotes distance from the centre.

Hence show that the potential of a uniform spherical source is the same
at exterior points as that of a central point source whose strength is
equal to the product of the volume of the sphere and its density. Show
further that if the radius of the sphere is a ard its density p the

potential at interior points is given by 2np (a2 - 1 R2).

Confirm that the potential is continuous through the surface of the
sphere, and sketch its magnitude as a function of distance from the
source centre.

4-19. If the density p of a volume source of potential is everywhere bounded,

and if p - a/Rn for R > R' where m is a constant, R is distance measured
from some local origin and R' is finite, show that the potential is
everywhere finite when n > 2 and is regular at infinity when n > 3.

(If d is the distance of 0 from the local origin and #o' is the contri-

bution to the potential at 0 of sources within a radius R' of the origin
then

(a) for d 6 R'

0 0 o - 2 Ron-2 fo• n>2

(b) for d A R'

o 9 + 4wn d2-n +R3-n for a > 2

0 n'-3 2"-n+ d n *3

of +•0 + ""(+ln d-in RI) for n 31
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4-20. Within a spherical region of radius R about a fixed point P the density

of a volume source of potential is given by p - a/r'n where a is a
constant and r' is distance from P. If 0 is a variable point show that
the potential at 0 deriving from sources within the region is finite
when 0 coincides with P. provided that n < 2. Show further that, for
this condition, o is continuous at P.

l 4w R2-n for n < 2[P"2 -n

For 0 < d 6 R where d - OP

(4•{R2-n d2-n f

2 - n - n for n <3

oo . 41a (t+ln R-ln d) for n - 2]

4.5 The Representation of a Scalar Point Function as the Combined Potentials
of Surface and Volume Sources

If the scalar point function V is well-behaved in the region of space T,
bounded by the surfaces S .. nZ, then its value at any interior point 0 of

T, as expressed by Green's formula, is

1 - l I V I (I2 t 1 12Vd¶ (4.5-1)

Sl..nr T

where r is distance measured from 0.

The potential at 0 of simple and double layer surface sources of

densities a and U on S I..nE, and of volume sources of density p in T, is
given by

"f +\ dS +] dT (4.5-2)

S I.nE a

where n is directed out of T, as in equation (4.5-1), and V is positive

for a corresponding doublet orientation.

Hec ifw u V V V2V

Hence if we put o- --- , i=--•and p the potential of these

sources (whose densities are independent of the position of 0) will be

equal at any interior point of T to the value of V obtaining there.

This representation is not unique as we now proceed to show.

Let U1 be a scalar point function which is well-behaved in the region ax

bounded externally by S1. Then the arguments which led to

equation (3.3-1) lead, in the present instance, to
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0 a (I dS - dT (4.5-3)

S1 T1

where r continues to be measured from 0 in T and the positive sense of
the normal n' is directed into T.

Similar relationships hold for each of the surfaces S2..n and the

associated regions rT..n. The functions U1, U2 . . . . . . . will, in general,

be unrelated.

If, in addition, U is well-behaved outside Z and is regular at infinity,
then

- 1 a{ - UE dS - Lff --- dT (4.5-4)

T E

where T represents all space outside E.

On adding equations (4.5-1), (4.5-4) and the set of equations typified by
equation (4.5-3), we obtain

V I a y + L (VU) dS-- 1d - do iw~~ n an ~ an Kr,)3 4wj rdT 4 wJ d

S .. nE T TI..nTI

(4.5-5)

This equation postulates a set of surface sources quite different to
those deriving from equation (4.5-1) and involves additional volume
sources. Since the choice of U is unrestricted, apart from the
requirement of continuity within individual regions and, in the case of
U., behaviour at infinity, there are an infinite number of possible

source configurations whose potential equates V at interior points of T.
This remains true when U is restricted to harmonic functions, in which
case

V (IV + -)-(V-U) dS - 2V d, (4.5-6)0 " 4v r an an an d 1r d r
SlI..nt T

There are, however, two unique forms of equation (4.5-6). The first
emerges when U is equated to V (or to its limiting value) at all points
of S I..n, making U the solutions of interior Dirichlet problems in Tl..n

and an exterior Dirichlet problem in T E. This does not impose any

restriction on V and leads to the relationship
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-V .1 1 -+2V dT (4.5-7)v°- 4-• •\(a a+ dS-4- -7

S 4 r
1..n

so that V is expressed as the potential of a single layer source ono

S Z. and a volume source within T.

au __av
The second unique solution requires that an' - over l..n Z and

consequently identifies U with the solutions of interior Neumann problems
in T .. n and an exterior Neumann problem in T2, in which case

V 4a /) dS - L dT (4.5-8)0 4w j anr) 4f r

S I.. T

so that V is expressed as the potential of a double layer source on0

S 2: and a volume within T. This representation, however, imposes1..n

restrictions on V because the interior Neumann problems are soluble only

if In dS - 0 for each of the surfaces S. in turn. When the surfaces

S do not exist, ie when T is a region bounded by Z alone, the
1..n

difficulty does not arise and equation (4.5-8) is applicable to all V.

We have confined our attention in the above analysis to the description
of V as a potential function in a bounded portion of space only. V may

or may not be defined outside this region. If it is, then V and/or v

may or may not be continuous across the bounding surface or surfaces. It
is clear that the potential source system deriving from equation (4.5-1)
and matching V at interior points of T can give rise only to zero
potential outside r because the right hand side of equation (4.5-1) is
zero when the origin of r is exterior to r. Thus unless V is zero
outside T it cannot be matched everywhere by this source system.

Suppose now that V is defined everywhere, and that it is well-behaved in
the regions rl..n, r2  as well as in r. For convenience let V be

designated V1 , V2 . . . . . . . . . . . . . V E in rT, T2 ............ T.E and V in r.

Then on putting U 1 - V1 , U2 f V2 etc in the equations leading to (4.5-5)
aV

and on pairing both V and E on opposite sides of S Z. as in Sec. 3.5,
an 1..n

we find that for interior points of r

V - L- d2V dr (4.5-9)

oL +i L Am Lm (r1 41r r

S1..nA

where AV and ac and v corresponding to

-~areteinemns o and
positive motion through the surface when the same arbitrarily defined
positive sense of the normal is assigned to each side of the surface.
The volume integral is taken over all space and it is assumed that V is

regular at infinity.
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Suppose nov that the origin of r is transferred to T1. Then

. 1 * L 'V1- , -L ( ds V
2V1

(V 1)0 3, au 4v -- dr (4.3-10)

S1 TI

where the positive sense of the normal is directed out of T1 .

We have also

Sa !2 dS -  _- d

0 - i L; i.r n2 - ~2an2 VVds r (4.5-11)

slI..n I T

S2 T2

with similar relationships for S3..n .

Upon adding equations (4.5-10), (4.5-11) and (4.5-12) etc, and pairing as
before, we obtain

(VI) " IAU+AV L dS - (4.5-13)(VOan a, 4v r

Sl..n I

The right hand side of equation (4.5-13) is identical with that of
equation (4.5-9) hence V is represented both in T and T, by the sa

expression. Similar arguments show that this holds also for the
remaining regions. It follows that any point function V. which is eall-
behaved at points not coincident with a set of surfaces and is regular at
infinity, may be represented at all points removed from such surfaces by
the potential of simple and double layer sources upon these surfaces snd
of volume sources throughout space, the respective source densities being

I aV ,V -v 2 V
- A L., L and 2- This distribution may be shown to be unique.

The result is not restricted to functions whose surfaces of discontimaity
comprise the set of closed surfaces SI..uE as shown in Fig. 3.1. It is

clear that the surfaces may be open or that a number of surfaces may
enclose each other in turn. When point or line discontinuities are
present their exclusion from the region of integration gives rise to the
usual unpaired surface integrals which, of course, are required to
approach a limit as the excluding surface shrinks about the
discontinuity, and which lead, for non-sero limits, to the introductioe
of point and line sources in the equivalent potential source system.

"_ _ _ I:
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so that

(grad #)o - ga( rad -oa (_ (4.6-2)

-n \n.
i-I i-I

a1  grad - a1  (4.6-3)

iI" I " ~T
i- P1

The expressions grad and 'grad-- are comonly replaced in the

1 1

literature by grad a, • and grad o . Since the gradient operator

can act only upon a scalar point function and since no such function is
adequately represented by the inverse of a distance between points unless

an origin of the distance is specified, the common factor in the second
1 r

pair of expressions must be identified with either I or IE of the

previous pair. The use of a common symbol to denote two distinct point
functions is confusing and for this reason we will adhere to the notation
which identifies r with distance measured from the point of evaluation of
the scalar or vector field, vit 0, end rti with distance measured from the
source location PI'

The above results have been obtained by working within a single system of
Cartesian coordinates. The som results follow from an application of
the distributive law

grad(#•g+ 2 --- ) - grad $1 + grad 02 --

wbere sj, $2 are the partial potential fields associated with each of the

point sources in turn. combined with the known inveriance of the
analytical formlation of grad * with respect to choice of axes (and
origin). This iLaariance has beem demonstrated for system of Cartesian
aen" and meet also held for cylindrical and spherical coordinate system
since these duplicate the Cartesian systems in evaluating the components
of grad * is three mutually perpendicular directions. Hence. if
(grad 60), (grad 0z)0 - are evaluated in turn by locating the origin

of spherical coordinetes at ?I. F2 - amd applying equation 12.6-5) to

the awsocisted sp4erically symmetrical fields, we may form [grad #I by
"aditioo of the revulting vectors. 0

Thos, in terms of the cvrroot netatiom,

to I tdr r
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whence

n

(grad ) 0 ai-

and this is identical with equation (4.6-2).

Grad # has continuous derivatives of all orders at points not coincident
with the sources. It is irrotational for all closed curves which do not
pass through any source, as may be demonstrated by an application of

Stokes's theorem (with curl grad # B 0) to a surface which spans the
closed curve and contains no sources.

4.6b Gradient of the potential of a doublet source

(1)
Let a point doublet of moment p be located at the origin of spherical
coordinates and aligned with the direction 6 - 0. Then according to
equation (4.1-7) the potential of the doublet at the point (R,.e,) is

p(1) Cos
S- RZ

whence from equation (2.6-5) the components of grad * are

(ga 0)1)0, 2p (1) cos 0
(grad *)R " • (Ljo "k - 2(1

S (p (1) Cos e) p sin)
(grad " R -e 2 . - sin 6 (4.6-4)

(grad 4) 1 a6 \R 2  0

(grad *)* - R sin e To ,, 2 -@ 0

As in the case of the singlet distribution the gradient field is

undefined at the source itself.

For a system of doublets grad 4 may be computed by vector addition of the
components associated with the individual doublets. these being evaluated

by locating the origin of spherical coordinates at each of the doublets
in turn. The magnitude of the gradient field of a single doublet is seen
to fall off as the cube of distance, whereas the field of the singlet

falls off as the square. It is evident that the gradient of the

potential of a 2 pole varies as 1
R m+2'
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4 .6c The Laplacian of the scalar potential of point sources

It follows from equation (4.6-I(a)) that for a system of singlet sources

,2# - 8 (x-X")2~

axo2 Z (OPi)3 (OP )2

i-I

whence

a2# a2o a20 2

0 0 0 x + ay + 3 -~

ie

V2# - div grad # - 0 everywhere outside the sources.
(4.6-5)

Alternatively. we way locate the origin of spherical coordinates at each
of the sources in turn, bearing in mind that

2(41+02 --- ) - V
2 *1 + V

2 
42

and that V2 # is invariant with respect to choice of axes and origin.

Then from equation (2.6-8)

(V
2

('#)) - d•-((ri)2 . ,o A - (-d o
1i 0 (7V5- d r ~ drjr ~(7772d'Ii iF 1  )1

ie

(V2 (, I)) - 0 (rt' 0)

hence V2 # - 0 at all points outside the sources.

Equation (4.6-5) is known as Laplace's equntion.

Since this result holds for any finite collection of singlet. we may
suppose that it will continue to hold for - maltipale. This is obvioualv

true when the lmiting process which leads to the formation of the

multipole is arrested at some point so as to leave the associated
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monopole magnitudes finite, but it may also be shown to be true for the

limiting case itself. Thus for an axial 2(a) pole situated at P the
potential at 0 is given by

axal(4.!-6)

P(M)

or, by the result of Ex.4-2., p. 231,

(an) _ 1 (0) /a m 1 N
axial \ 3. 0

Then

St(a( xial) - X-)( " . + + -

0 10

I (in) 
( ,2 2 2 L

since all derivatives (Including cross derivatives) are continuous at 0.
te

(y2# (a) ( I I(i)s an v i

P (-I)" V2\ axial,, -" -lm

-o

The argiamnt is readily extended to "o-axial maltipoles.

Since div grad # is zero at all points other than those mccuptod bv
seurcte. grad is soloeidel in so urcoe-free aperiphractic regimoe. It
my or my not be solenoidal is periphrectic (non-aperlphractic) reglios.
The simplest eamla of this is the ease already treated is See. 1.14

where the vector I is nosw sem to be Identical witb the negative gradient
of the potential of a unit source situated at the origin of coordinates.

In the region beyond the 6 sopere div P - 0 but P is not solenoidal.
It weuid be rendored solenoidal It the sinmlet at the orisin were

replaced by a doublet or other multipole because the fli.e of I throush
the 6 sphere wlo d toe bocmo zero. (See nmxt sub-section.)
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Substitution of Xds, adS and pdT for ai in the above analysis leads to

Gauss's law for distributed sources for those cases where the source
14

neither intersects nor touches the bounding surfaces We have

f - grad *).dS - 4v fds
Sl..nE

or 4" fadS

or 47r pdT

where the right hand integrations are carried out over interior points of
R.

For mixed sources the individual contributions are additive, since there
is no mutual interference. (A point source has no length, a line source
no area and a surface source no volume.)

EXERCISES

4-21. Let a vector field F be defined by

A
n -, n

F rr7 a -,t(l• .ai -r~

1 *a+1 I o
i-! J.1

where a is a scalar magnitude associated with a fixed point Pi. ri is

the position vector of any point relative to P and a is a constant.

f is seen to comprise the sum of a set of central vector fields, so
called because the component fields are radially directed in relation to

P", P2 ---. f may be shown to be irrotationol for all closed curves

which do not pass through any of the points P1. P2 -- , irrespective of
the value of a. Prove this

(a) by direct integration, m"king use of the relationships dri - dr;

etc. and r'.dr' - r' dr'

(b) by means of equation (1.16-1) and the result of Ex.I-59., p. 78

(c) by expressing F as the gradient of a scalar field.

14. A justification of this piocedure will be found in the next section.

I
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4-22. With F defined as above, show that div T is negative, zero, or positive
at all points other than P1, P2 --- according as a is greater than,

equal to, or less than 2.

4-23. A doublet of vector moment p is situated at P. If the position vector

of 0 relative to P is P', show, by resolution of the spherical
components, that the gradient of the potential of the doublet at 0 may
be written as

(1) .)
grad 3 r W

(r') 3  (r')S

4-24. Extend the proof of the harmonic nature of the potential of an axial
multipole to an oblique quadrupole.

4-25. State and prove the planar form of Gauss's law.

Ans: The law may be stated as follows:

Let a multiply connected region R in the plane be bounded externally by
the regular closed curve f' and internally by rl..n. Let P1-- P aind

Pk--Pm be interior and exterior points of R at which sources of

logarithmic potential of strengths a,--am are situated. Then if * is

the logarithmic potential of the complex

(-grad #).n' ds - 2v ai

rl..nr' -

or

(,,)2 .n do - 2 aI

rl..nr'

where n' is the unit outward normal in the plane to the contour element

do. and pi Is the position vector of ds relative to Pi.

The proof parallels that for the three dimensional case.

4-26. It follows from Cause's average-value theorem (theorem of the arithmetic
mean) Kx.3-2., p. 180, and from the harmonic nature of the potential
field outside its sources that the mean value, over a spherical surface,
of the potential deriving from point sources entirely outside the sphere
it equal to the value of their potential at the centre of the sphere.
Deduce this from one of the results of Zx.3-19., p. 188, and from the
other result of this exercise deduce the 'second average value theorem',
viz. 'The mean value over a spherical surface of the potential of point
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sources lying entirely within the sphere is equal to the sum of the
source strengths divided by the radius of the sphere.' [The theorem
continues to hold for distributed sources, as a simple extension of the
analysis will show.]

4-27. Let the planar point function V be well-behaved in the region S of the
plane bounded internally by the closed curves fi and externally by1..n
r'. Make use of equation (3.9-3) to show that V may be expressed at
interior points of S as the logarithmic potential of line singlets and
doublets coincident with r r' and having the respective densities
13V -__V (where the doublet density is positive if orientation2-r•n an' 2-R'

corresponds with n'), together with a surface source on S of density
-_± V2V.
2-

Following the analysis of Sec. 4.5 show that an infinite number of
logarithmic source combinations can be found whose potential within S is
equal to V.

4-28. Extend the analysis of the previous exercise to show that if V is well-
behaved everywhere in the plane except upon rl..nr', it may be expressed

at any point 0 in S', not coincident with r 1  r'r", as

V = ) L A M) + 0 n --Lds 1) ( nL V2V dS0 fi ý_ (IP 2 n 2w an' (. 01] 1 (10 2w Vd

+ 1f [(n 1) DV - V a In ds

where r" is some contour which encloses r '..n d S' is the region of

the plane bounded externally by r". p denotes distance from 0. and the

factors A 3 and AV represent the increments of n and V for positive

motion through a contour when the same arbitrarily defined positive
sense of the normal is assigned to each side and the positive sense of
doublet alignment conforms with this.

Hence show that if R2 !V- is bounded and VO at infinity15, V isaR
expressible as the combined potential of logarithmic line singlets and
doublets coincident with rI..n r' and of logarithmic surface sources in

the plane wherever V2 V is non-zero.

4-29. The results of Ex.4-27. and 4-28. above are applicable to any scalar
function which is v.11-behaved at most points of a bounded or unbounded
region in a plane, whether or not the function is defined only in the
plane or derives from a cut across a two or three-dimensional field in
space.

15. or, more generally, if the line integral around r" vanishes at
infinity.
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It should therefore be possible to express a Newtonian potential at
points of a plane as the potential of a set of logarithmic sources in
the plane. Carry this out for the Newtonian potential 0 of a uniform,
spherical, surface source of radius a and strength q when the plane

passes through its centre T, ie express 0 \ inside the circular

section and -outside it, where R is distance measured from T) as the
R 0

combined potential of a logarithmic line source around the circle and a
logartihmic surface source upon the plane. Prove that this expression

reduces to 9 and !- by evaluating the line and surface integrals.
0

[Hint: For R > a. first show that the line integral around r" in
Ex.4-28. vanishes when r" recedes to infinity. Then compute V20,

bearing in mind that the relevant expression is not that associated with
a three-dimensional system but with a plane. To confirm the result,
evaluate the line integral around the circle and the areal integral
between R = a and R = R by making use of the expansion for In p given

0

in Ex.4-9., p. 232. Then derive an appropriate expansion for in p when
R > R and complete the evaluation of the surface integral out too

infinity.]

Ans: For R > a

0 "n s . o ndS

where the line integral is evaluated around the circle and the surface
integral at all points of the plane outside the circle.]

4-30. Show from the result of Ex.3-15., p. 183 that a point function V, which
is well-behaved within the region R bounded by the surfaces SI..n E may

be expressed within R as the sum of either exponentially enhanced or
exponentially attenuated potentials (y real, and positive or negative)
deriving from simple and double layer sources S I..n and volume sources

iav v
in R, of respective densities I an -V and - L (V

2
-y

2
)V.

[Note particularly that the potential associated with an element ofa 1 yrd an
double layer of density u is given by w L y dS and not by

meyr an -) dSwhere n is directed out of R.1 /

Show further that there are an infinite number of ways in which V may be
expressed in the finite region R, and for a given exponent, in terms of
surface sources upon S I..n and volume sources within T, -- n, and

that when V is defined everywhere outside S1..n the surface integral

over I vanishes as E recedes to infinity, provided that the associated
exponent is real and negative and V and grad V are bounded at infinity.
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4-31. Show that there is a unique combination of simple and double surface
sources and of volume sources whose potential I's everywhere identical
with an arbitrarily specified scalar point function which is well-
behaved at all points removed from certain surfaces and which is regular
at infinity.

4.7 The Gradient and Laplacian of the Scalar Potential of Line and Surface
Sources

4.7a The gradient and Laplacian of the potential of line singlets and
doublets

The gradient of the potential of a finite line singlet (simple line
source) at points outside it can be found by approximating the source
with a set of point singlets of strength UAs, and proceeding as in
Sec. 4.6a. We have

0 ~ds 68 m(t A.,r r PirPi I)

whence

n n

n1 %, )(, A - As
3x 3x IOP I ýx OP I/ I

i-I i-I

since A is independent of x . or

n n

ax ax

06 P I OP I/ P- •i (O.-,)

M he
- I i-x r /PI

i-I

bnce

hom a
11 n

(Brad $)0 - i P he

I~ P

h"il '
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The integral form of this relationship is

grad grad ds = - grad 1 ds f 3 do (4.7-i)

r r r

If it is borne in mind that * and grad 0 are always evaluated at the
variable point 0, which is the origin of r, and that the components of
the integrand are evaluated upon ds, then the interpretation is

unambiguous.

This allows us to drop the subscript 0 from grad * in equation (4.7-1)
16

and subsequent equations

The above treatment, in which the finite differentiated series is
ultimately replaced by an integral, presupposes that the order of the
limiting processes associated with integration and differentiation may be
reversed, ie differentiation may be carried out under the integral sign.
This procedure can be shown to be legitimate provided that the integrand
is a continuous function of the coordinates of 0 and ds, and the region
of integration is finite. Since r is non-zero for each surface element,
and A, if piecewise continuous, may be treated as the sum of continuous
density functions, the required conditions are fulfilled. Higher order
derivatives of the potential at exterior points ('points of free space')

17
may be found by the same procedure

The radial and axial components of grad * which obtain for a uniform
rectilinear source (Fig. 4.4) may be determined by differentiation of
equation (4.2-1) with respect to p and z, or, more easily, by integrating
the components of grad * in accordance with equation (4.7-I). It is
found that

(grad*)p + c. + Z -t5 (4.7-2)

16. The alternative form of grad *, whi9/ parallels equation (4.6-2)

rather than equation (4.6-3), viz grad *- X A (grad (Ti-)) ds, where r'

is distance measured from de, does nbt comprise a surface integral in the

ease sense as equation (4.7-1), since grad(r) is not evaluated upon the

the contour element. For this reason we will make no use of it.

In writing n do ds as an intermediate step in the

Uo r "r
routine differentiation of the potential function, it is, of course, to be

•n 1

understood that 1 - does not stand alone but in apposition with do, so

axo0  n \_r n

that it is equivalent to a n where P is a point of ds.
axo0
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for non-zero values of P, and

(grad ) - (4.7-3)

at points outside the source.

These expressions may be written in terms of the angles shown in
Figs. 4.7a and 4.7b.

RR 1

0

Fig. 4.7a Fig. 4.7b

For non-zero values of P

(sin 81 + sin e2 ) (Fig. 4.7a)

or (4.7-2(a))

-p- - (sin el - sin 62 ) (Fig. 4.7b)

and

(cos 81 - cos 82) (4.7-3(a))

It follows that at all finite distances from a uniform rectilinear source
which extends to infinity in both directions, the radial and axial
components of grad # are given respectively by

(grad ),) - - (4.7-4)

(grad O)z " 0 (4.7-5)
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any regular surface source of piecewise continuous density the increment

of i• in passing through the surface at an Interior point in thean

direction of the positive normal is -4wo, where a is the local surface
density (assumed to be continuous at the point in question). It may, in

18
fact, be shown that this is the case , and that the limiting values of

-A on the opposite sides of the surface are
an

(a,>. - -Zio + L a
-21rc ~ r , 3 dS

(4.7-9)

•@ =+2wo + n. a r dS

S

where n is the unit positive normal to the surface, and where the
integral is evaluated at that point of the surface cut by the normal.

Since # is continuous on and through a simple surface source, it would
appear that the derivative of # in the direction of any tangent to the
surface at an interior point P must have the same limiting value when P
is approached along the normal through it from either side of the
surface. This may be shown to be true provided that a limit exists, the
required condition being that

jo(Q)-a(P)j s Arn for r - PQ 9 c (4.7-10)

where Q is a point of the surface and A, a and c are positive constants.

This is known as a H8lder condition. We will meet it again in connection
with volume sources.

If the disc-shaped simple layer source considered above is replaced by a
surface doublet (double layer) of constant density U, whose moment is
aligned with the positive z direction, the potential upon the axis is
easily shown to be given by

27r- 2v1zi a+2 (zoo) (4.7-11)

whence

a2
S-2w (z*O) (4.7-12)

3z (a 2 +z 2 ) 3/ 2

18. See Kellogg, Ch. 6 for a rigorous treatment of this and other aspects
of surface sources.
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hence

(grad )x - W dS.V r

S

and

grad 4 - P (dS.'V) (4.7-14)

S

but from equation (1.17-12). with substituted for F. we have

(dS.V) div d dS curl

S r S S

where r is the boundary of S.

and, since

div--I - curl rL - 0 (r*O)

f d*§.V) -r- d 3 (4.7-15)

S r

hence

grad* - -V grad 12 r x dr (4.7-16)

r

We will return to this relationship and its further transformations
subsequent to the treatment of vector potential.

The Laplacian of the potential of surface sources is undefined upon the
surfaces themeselves because # and/or its derivatives are undefined
there. Outside the surfaces V2# = 0. The proofs parallel those for line
sources.
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2wa
2

O1 coo *
(0>8)

0

(p, z finite)

2wolp coo * (o'a)

Hence prove (a) that the potential outside the cylinder is identical
with that deriving from an infinite line doublet on the axis, having a
mo•ent wa2ao per unit length and an orientation 4 - 0. and (b) that at

points inside the cylinder grad * has the constant magnitude 2wao and is
directed parallel to the half-plans 0 - 0.

4-36. Extend the analysis of the previous exercise to show that when

a - a cos n 4 + o' sin n 0 (n-1,2,3---)n n

the potential at finite distance from the origin is given by

2a U (o cos no + a' sin nO) (p>a)
n (n n

np

ne (an cos no + 0' sin nt) (p<a)

n-i n nna

Confirm that the tangential derivative of the potential is continuous
through the surface and that # is harmonic inside and outside the
cylinder.

Show that the normal derivative of # changes from +27rc to -2wo on
passing radially outwards through the surface and hence deduce that for
all density distributions which are a function of 0 alone and give rise
to zero total source strength per unit length of cylinder, the normal
derivatives at the surface depend only upon the local surface density.

4-37. Let the surface density of the cylindrical source of the previous

exercises be single-valued and given by a - f(M). Evaluate n. r-- dS

at a point of the surface at finite distance from the origin and use
equation (4.7-9) to show that the limiting values of the outward normal
derivative of #, as the surface is approached from within and without,
are

- + 2wo and - 3 -2wo
a a

where q is the total source strength per unit length of the cylinder.IIHence confirm the values of U-found in Ex.4-34. and 4-36.an
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4-'8. The potential of a uniform, spherical surface source (or its
mathematical equivalent) has been treated in Ex.4-18, p. 243. Determine
the value of grad # at points inside and outside the sphere by
differentiation of this function. Check the reault (a) by integration
of the components of grad # associated with circular strips of the
surface normal to an axis of syetry, and (b) by an application of
Gauss's law.

What independent approach demonstrates that grad * is zero inside the
sphere?

Arts: grad * - - 4wa 2 o/R 2  (R>a)

grad * - O (R<a)

Since V2 # - 0 inside the sphere and since, by symmetry, * is constant
over any concentric spherical surface, it follows from Theorem 3.2-2
that 4 is constant and grad # is zero within the sphere.

4-39. Two uniform, spherical volume sources of radius a and densities ±p are
centred upon the origin of spherical coordinates. If the positive
source is now displaced a distance Az along the axis 0 - 0, show that
the combined sources behave like a spherical surface source of density
oa cos 0 when p- and Az-O in such a way as to maintain pAz constant and

equal to oa. Hence show that a spherical surface source of density

al cos e gives rise to a potential outside the sphere identical with
4 3

that of a point doublet of moment i wa3ol, and orientation e - 0, at the

centre of the sphere, ie

Sira
3°l cos e

3 (R>a)

Confirm this expression for points on the axis e - 0 by integration of
the partial potentials deriving from individual surface elements.

Make use of the result of Ex.4-18., p. 243 for the potential inside a
uniform spherical volume source, to show that the potential inside the
surface source under consideration is given by

* w a1 R cos 0 (R<a)

and hence show that for R < a the vector field, grad *, has the constant
4

magnitude A wal and is directed parallel to 6 - 0. Confirm the value of

the potential at points on the axis by surface integration, and examine
the normal and tangential derivatives of # in the vicinity of R - a.
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4-40. The potentia: at an exterior point 0 of a uniform double layer of
density U is equal to -u

0
, where P is the solid Engle subtended by the

layer at 0. The change of potential associated with a displacement As
from 0 to 0' is equal to that obtaining at 0 when the layer is

translated by -Aia. Determine the change of solid angle resulting from
this translation in terms of a triple scalar product involving the
vector area of the elements of the peripheral strip traced out by the
boundary r, and, by interchange of dot and cross, arrive at the
relationship

r

irrespective of the choice of positive currency.

Hence develop an independent proof of equation (4.7-16).

4-41. Devise a further proof of equation (4.7-16), similar to that given in
the text, without making use of equation (1.17-12).

[Hint: Transform

- a dSx + dSy r
3  

+ dS r
3

S

into

dS i - I ( o) - dSy ra g r

+ I{dSz (grad 32 ° dS) (grad (z-?)}
r3 x-dx r3 .z1

and apply equation (1.17-1).]

4-42. A uniform rectilinear singlet logarithmic source of length 2c and
density A' lies upon the y axis of coordinates in the xy plane and is
bisected by the origin. Determine the value of the associated potential

at any exterior point (x,y), and at the point (O,y) where jyj s c. and
so show that it is everywhere defined and continuous. Find the rate of
change of this potential along the x axis, and hence the value, upon the
x axis, of the potential of a logarithmic line doublet of vector density

i•* ' coincident with the line singlet.

I
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Deduce the occurrence of a discontinuity of magnitude -w' in the normal

derivative of the potential of any Logarithmic line singlet and of 211'
in the potential of any logarithmic line doublet on passing noradliv
through these sources at points where the densities are continuous.
Compare these results with those of Ex.4-28., p. .57. when V is
identified with the logarithmic potential of singlet and doublet sources
on r "..nr, showing first that the required conditions are satisflvd at

infinity.

Ans: Line singlet

O(xy) - )' {(c-y) In + (c+y) In
(x

2 +(cy)
2 )4 + +(cy) n

+ 2c - x (tan- 1 c - y + tan-l c + y

- (x,O) "-2X' tan-1 S (xXO)rx x

Line doublet

*(x,O) - 2L' tan-1 (xXO)
x

4-43. It was shown in Sec. 3.3 that if V is any function, harmonic outside the
local surfaces Sl..n' then

4V - dS

Sl. .n

where n is directed into S

This relationship holds provided that the point of evaluation of V is
located at finite distance from S . Demonstrate that the latter

restriction is unnecessary by proceeding in the following way:

Let f be the potential of singlet and doublet surface sources upon Sl..n

having the respective densities L ý- and - (where the doublet
4w n 4r Adensity is positive if doublet alignment corresponds with n.)

Show that # is harmonic outside S1..n and that * - V upon S .. n. Hence

deduce, by means of equation (3.1-4) (with U replaced by # and I located
at infinity), that * and V are identical outside S1..n and that V may

consequently be expressed everywhere in the above form.
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Li.-L E ~dT E~ 2 dS A. P-r ~dS.
Ax.O Ax r Ax r x

T 1"T2 "rT i S " Set

where S" represents those parts of S1, S2 and Z contiguous with nl", T21

and T1".

On summing all contributions we get

partial pot p d dSx (4.8-6)
j r ax r dS

T-T S 1,2£

whence we may proceed Imdiately to the generalisation

grad partial pot p " f grad p dT - dS (4.8-7)

.r-r

By integrating equation (4.8-2) over the region T-Ta and combining the

result with equation (4.8-7) we obtain the alternative expression

grad partial pot p - - p grad 1 dT + E dS (4.8-8)

T-T6 S6

It is not immediately apparent that grad pot p may be found by taking the
limit of equation (4.8-7) or of equation (4.8-8) as 6-0, since this

M . operation yields

Lim

grad partial pot p

8+0

as required. However, on pursuing the above treatment for this
particular case, we see that, for a field slip' Ax, the increment of that
component of pot p arising from common volume elements (say pot' p) is
given by

A pot' - Lim d•- -dTLim dF
6.0 jr 6-0

T-T T-T6

iL6

_o ___________________________
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Since each integral is convergent this may be written as

A p ' - Lis P dT
6-*0 r

|T-T 6

Now the first derivative of the source density has been postulated to be
continuous throughout T, hence from Taylor's theorem

app

P• - 5x .•• Ax

at each point, where Lx is evaluated somewhere upon the associated slip
path.

t ~Thus
SA pot ' - &*OrdLT

Lim r

Apot' P j Ax A]0

6.0 r ax

T-T 6

Hence

a po, Lim Lim f1P d, !- dr ,
ax- potp Ax+O 6.0 r r 3x

'T-T6 T

It follows that

2 potp - 1 dT.( • dS (4.8-9)

S. .n

and

grad pot p - f grad p dT dS (4.8-10)
ST fS rn£

1..n
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which confirms the relationship

Liii Lim
grad Lim partial pot p - grad partial pot p (4.8-11)grd6,0 prilotp-6+0

Since the surface integral in equation (4.8-8) vanishes as 6-0, we have,
in addition,

grad pot " - f pgrad 1 d, (4.8-12)
T

Any attempt to replace the field-slipping technique by a 'variable r'
approach leads to difficulties in the limiting process, If Ax is allowed
to approach zero prior to 6, the resulting expression represents the
gradient of the cavity potential within a vanishingly small 6 sphere; if
the order of taking limits is reversed, the integrand of the potential is
no longer a continuous function of the coordinates of 0 in a
neighbourhood of the point of evaluation and the significance of the
operation is not clear. Nevertheless, the above analysis reveals that
the limiting values of grad cavity pot and grad partial pot are
identical. In addition, the relationship

x°f dr - - ax

T

which was employed in the derivation of equation (4.8-1) where r was
everywhere greater than some positive number, is now seen to subsist when
the integral is improper, ie when 0 lies within the source. However, it
should not be supposed that the la ter behaviour extrapolates to higher-

order derivatives. Thus, PV2  dr is Lim df is always
f r 6.*0 fPV2

ro because V2 (•) - 0 for all volume elements in the integral, whereas

V
2 f I dr is. in general, non-zero.

fTr

The field-slipping technique is equally effective in the determination of
grad pot p at exterior and boundary points of r. For exterior points,
where no 6 sphere need be invoked, we arrive directly at
equation (4.8-10) without the associated limiting process, and this may
be transformed into equation (4.8-12) by integrating equation (4.8-2)
over the entire region bounded by S1..nZ. At boundary points,

grad partial pot p continues to be given by equation (4.8-7). except
insofar as the 6 sphere excludes portion of the surface integral over
that surface upon which 0 is located. As 6.0 the volume and surface
integrals converge and grad pot p is represented by equation (4.8-10) as
before. Since the x component of grad pot p is consequently equal, at

all points, to the sum of the potential of a volume source of density h
dS ax

and that of surfaces sources of density - both of which are

defined and continuous everywhere, it follows that grad pot p Is itself
continuous upon and through the bounding surfaces.
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When the source density has piecevise continuous first derivatives in T
and 0 lies within the source, but not upon a surface of discontinuity, a
simple extension of the above analysis shows that equation (4.8-7) must
be replaced by

grad partial pot P - f grad p dT - ds - e A-s (4.8-7(a))
I~~ SSrf

-T 6 S1..nE SASB

where the last term involves integration over both sides of each interior

surface of discontinuity, the postive sense of dS corresponding to motion
through the surface away from the side of integration.

The latter surface integral is cancelled when equation (4.8-7(a)) is
combined with the set of equations resulting from the integration of
equation (4.8-2) over each subregion in turn, so that equation (4.8-8)
applies as before. Hence in this circumstance grad pot p is given by
equation (4.8-12) or by equation (4.8-7(a)) with T-T 6 replaced by T. It

will be noted that when piecewise differentiability of p is accompanied
by continuity of p throughout T the additional surface integral of
equation (4.8-7(a)) vanishes. These expressions continue to hold when 0
lies upon an interior surface of discontinuity.

4.9 The Laplacian of the Scalar Potential of a Volume Source

Poisson's Equation

Extension of Gauss's Law

When the point of evaluation of the potential lies outside the source

af E d, di'
Tx Jr ax r0

VON hence

a2 d, - a () 82
3x2 r ax ax j 58X'r1 d

T T

and

V2f ed, - V2( dT 0
T

Thus, the potential satisfies Laplace's equation at points outside the
source, ie

div grad pot p - 0 (4.9-1)
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The same analysis applies at the interior points of a fixed cavity
created within the source, so that

div grad cavity pot p - 0 (4.9-2)

To determine the Laplacian of the potential at interior points of the
source we note that the x derivative of the potential of p may be
expressed as the potential of the x derivative of p' together with a

certain surface integral (4.8-9). Accordingly, if 22 has continuous
first derivatives in T, then ax

i1o E d ° -2 df -Mx d dSx

.70  dr 3 frax r 3 ax f dT T S I. Z

" d"i - 3x x ax dx

SS1..nI S I..nE

and

V2 dr - f V2P dT - grad P.dS + P grad 1'dS-

T T S1 .. "I S1..n "I

ie

V2 Odr " f V2p d¶ + f p n "(!) dS (4.9-3)

T S Ex x S1. .n£

whence from equation (3.3-3)

v2f •dT - -4,p

T

Hence, at interior points of the source,

div grad pot p - -4wp (4.9-4)

This Important result is known as Poisson's equation.
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The corresponding expression for the partial potential is easily shown to
be

div grad partial pot 0) - L -o 0 - dS (4.9-5)

S6

The field-slipping technique is equally applicable at points outside the
source.

In this case we again obtain equation (4.9-3), but because the origin of
r is exterior to the source, the right hand side of equation (4.9-3) is
zero in accordance with equation (3.3-1).

Poisson's equation is seen to reduce to Laplace's equation at points
outside the source, or at any interior point where p is zero. In this
connection it should be noted that if 0 is zero at an isolated point
within the source, the value of the Laplacian cannot be derived
legitimately by the 'variable r' approach.

It is clear that Poisson's equation will continue to hold when p is
piecewise continuous, provided that discontinuities of p and its
derivatives are excluded from a neighbourhood of 0; for the 'variable r'
analysis, which shows that the excluded source elements contribute
nothing to the Laplacian at 0, is insensitive to a finite number of such
discontinuities.

The conditions under which Poisson's equation is valid may be shown to be
much less restrictive than would be suggested by the field-slipping
analysis. It is, in fact, only necessary that p should satisfy a Hdlder
condition at the point in question, although this admits of the

possibility that p is not differentiable there 1 9 (see Ex.4-48. and 4-49.,
pp. 284-5).

An application of Poisson's equation permits of an extension of Gauss's
law to include the case in which the surfaces S1 .. nE of integration of

grad # are immersed in a volume source in which are embedded point, line
Sand surface sources which have no point in common with S .n Upon

integrating equation (4.9-4) for that component of the potential deriving
from the volume source alone, we get

f grad pot p.doS - -4w f 0 dr

S E..n T

19. Kellogg, Ch. 6. In the present context, P satisfies a Holder
condition at 0 if there is a neighbourhood of 0 for which

jp(O')-p(O)I i Aro, where r - 00' and A and a are positive numbers. A
H51der condition implies continuity but not necessarily differentiability.
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This continues to hold when P is bounded and satisfies a Holder condition
everywhere except upon interior surfaces of discontinuity; for if the
region is divided into a set of subregions lying just within the surfaces
of discontinuity, equations of the above type hold for each of the
subregions in turn and the limiting values of the surfaces integrals over
the interfaces cancel in pairs since grad pot p is continuous through

them. The components of grad *.dS arising from the remaining sources

SS..n

retain the values found previously because the superposition is linear,
hence for the complete source system

f (- grad 0).dS - 4w x total strength of sources enclosed (4.9-6)

S1..nr

As a consequence of the definition of the partial potential in terms of
an excluding 6 sphere, the foregoing expressions for the potential and
its derivatives - cavity potential apart - involve the limiting values of
volume integrals as 6-*0. It is easily shown that the same limiting
values obtain for all regular excluding regions. This continues to be so
in most of the subsequent analyses (unless the geometrical properties of
the 6 sphere are invoked for the purpose of evaluation) although, in
general, the 6 notation will be retained. In the few cases in which
volume integrals are non-convergent, attention will be drawn to the fact.

EXERCISES

4-44. The relationship

grad dr - -f 0grad dr - f dt

T TT

subsists at each point of a volume source in which p is piecewise

continuous.

Demonstrate this in the following way.

Let 0 be an interior or boundary point of the source. With 0 as centre
draw a sphere of fixed radius a. Then the above relationship clearly
holds for source elements outside the sphere. Now draw a concentric
sphere of radius 6 within the first. Let 0 be a point displaced from 0
by a distance Ax (,6) along the positive x axis through 0, and let r'
and r be distances measured from 0' and 0 respectively.

Make use of the inequalities Ir-r'I S Ax ,nd ' to show

that a positive a exists such that for 6 < A
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{$ol) . O /Ax P(x-x ) d T < E

where 0(0') - f • dt and E has any positive value.
T6

T6

Then show that for this value of A a positive X exists such that for
Ax < X an inequality identical with the above holds for source elements

lying between the spheres. For this purpose expand 1-1 in terms of a

in Sec. 4.1, bearing in mind that IPmc(Cos e), I.

Hence, prove that

Lim / .P(x-x 0
ArxO F(O')-"(O+ Ax r 3 dT

and complete the demonstration.

4-45. It follows from equation (4.8-8) that

4/f,,, -

T-T6 T-T 6  S6

hence

9X rax x ax rdS

"t-T T-T 6 S 6

Show that the field-slipping technique may be used to expand the right-
hand side of the lower equation, and so derive an expression for

V2 
f dT in terms of volume and surface integrals. Reduce this

r

expression to (4.9-5) by expanding div grad and forming its volume
integral over T-T 6 . \P

4-46, Show that

V
2  

V ( dS - 72 f dS - 0

S ES 1.ASI..n £ I. .n £

avwhere V and are piecewise continuous upon Sl..n£ and the point of

evaluation does not lie on any surface.
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Hence show by means of Green's formula (equation (3.3-3)) that if V is
any function well-behaved in T, then, at interior points of T,

-09r2V - V2 f V!V dT

T

or

-4wy - V2f V dT where y - V2V
f r

[This does not constitute a general proof of Poisson's equation because
y is not an independent point function.]

4-47. Make use of the result of Ex.4-18., p. 243 to prove that V2 f - -4wp at
all interior points of a spherical volume source of constant density P.

4-48. The potential at a distance R from the centre of a spherical volume
source of radius a and density f(R) is given by

R a

* 0 f(R) 4iR 2 dR + f(R) 4wR dR (PRa)

0 fR

To f(R) 4wR 2 dR (Rla)

in accordance with the results of Ex.4-18., p. 243.

If f(R) is everywhere continuous, show that

• R

d - ! f0 f(R) 4wR 2 dR V2, - -4wf(R) (O<Rca)

0

d- 0 V2# - -4wf(O) (R-O)
dR

a

S- - f(R) 4,R2 dR 2, Ra)
dR R 0
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14-49. Let the density of a spherical volume source be given by p " R sin K,
where R represents distance from the centre of the source. Show that

the derivatives of p are undefined at R = 0 and that f! dr is non-

T
convergent there. Hence conclude that, in this case, the field-slipping
technique fails to define a value of V2 0. Note, however, that on the
basis of the previous exercise (or because p satisfies a Holder
condition) the Laplacian of * does exist at R - 0 and is zero there.

4-50. Let a,, U1, pl, and 02, 42, P2 denote two sets of finite, continuous

source distributions on given, non-intersecting surfaces and in space,
and let P, and P2 satisfy a Holder condition at all points. If the two

sets give rise to the same potential at all points outside the surfaces,
show that the corresponding source densities are everywhere identical.

(Hint: Consider the behaviour of the potential field deriving from the
difference distributions a1 - 02, U1 - U2, P1 - P2.]

4-51. It is possible to develop planar equivalents of the relationships
derived in Secs. 4.8 and 4.9.

Consider the potential in the xy plane of a system of logarithmic
surface sources of density a' in the region S of the plane bounded by
the closed curves r r..nr. If a' is finite and piecewise continuous in
S we may define

partial pot a' a o' In dS

S-S 6

where S is the region within a circle of radius 6 centred upon the

point of evaluation 0, and

pot a' "n ' dS

S

Devise a procedure similar to that adopted in Sec. 4.4 to demonstrate
that the integral for pot a' is convergent, and that the potential is
continuous everywhere in the plane.

Develop a planar field-slipping analysis to show that at interior points
of S, where it is supposed that a' is well-behaved,

-oao I f
partial pot a' ! a' In - dS a' in -'a ds

S-S a r r'
6t..
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and

grad partial pot a' - (grad a') in dS - in n' ds

S-s 6  r .. nrV

where n' is the unit outward normal to the bounding curve.

Expand grad o' in 1 and integrate over S-S 6 by means of the planar

analogue of equation (1.17-3) to obtain

a' in ' ds a' grad in 1 dS + (In grad a' dS

r .. nr'r 6  s-s 6  s-s6

where r6 is the boundary of S6, and hence show that within the region S

;1 -
grad pot a' - (grad a') in - dS - I' In 1 ds

S r

a' grad In 1 dS

S

Devise an independent proof of the latter relationship for points
exterior to the source system.

Finally, show that

grad cavity pot a' - - j' grad In 1 dS

- (grad a') in 1 dS - a' in n' ds

S-S 6 r .. nrr6

4-52. Extend the analysis of Ex.4-51. to show that

ax 2 partial pot a' - in 1 - L' 1, . d,

S-S6  r r'

+ j x n ' .ids

r r,I..n
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and proceed to the relationship

72 pot a' - (Va') in 1 dS yc'- In-daso + of (In da

S r..nr rl..nr

By combining this with equation (3.9-3) derive Poisson's equation in the
plane, viz

div grad pot a' - V2 f a' in 1 dS = -2w0'

S

4-53. Show that, with the exception of Poisson's equation, the formulae of
Ex.4-51. and 4-52. continue to hold when the problem is converted to one

of Newtonian potential in the plane, provided that In - is replaced

everywhere by I.
P

4-54. If the origin of r lies within the region bounded by the surfaces S]..nE
and if # is the potential of interior sources, show that

f L- dS - 0

SI..nz

4-55. Prove that Poisson's equation continues to hold at points where p has
continuous second derivatives when p is piecewise continuous within the
region of integration with open or closed surfaces of discontinuity.

4-56. Employ a field-slipping analysis to show that

V2 (partial) f cos or d - (v 2 p) 1 cos r dT

SI..nz

where a is a constant, and transform this result via a modified form of
Green's theorem into

,rm mmm mmmm mmmAm
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V2 (partial) JIr cos or dT a2 cos ar dT

T-T6 T-T6

+ 11O ar• L i- coo a dS+f cos ar-ý- - 10 (nr co r)] d

S6

Hence demonstrate that

(V 2 12 ) f Cos ar dr - -4wp
r

Show similarly that

(V2+02)f sin ordt - 0
T

and deduce that

(V
2
+0

2
) ±or dT -4w

fTr

4-57. Proceed as in the previous exercise to show that

(V2 -y 2 ) f 2 • e r dT - -4wp
"T

where y is a real, imaginary or complex constant, and so derive

(V2 +(a 2 -B 2 )-2JaB) E ±inr a dT - -4wp

where a and B are real constants.

4-58. Let the point function V have continuous second derivatives throughout
all space and be regular at infinity, and let V2 V be zero outside a
sphere of finite radius. If # is the potential of a volume source of

density - L V2 V, modify the argument of Exý4-43., p. 272 to show that V

and # are identical, and that V may therefore be expressed everywhere as

f 2Vv

4wV0 - -- dT
0 r
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4-59. Develop the planar analogues of the previous exercise and that of

Ex.4-43., p. 272.

4.10 Equivalent Layer Theorems in Scalar Potential Theory

Let the surfaces S I..nZ divide a finite system of sources into two parts,

viz that within the region R bounded by S I..nE and that outside it. It

is supposed that no point source lies upon the bounding surfaces and that
no line or surface source has a point in common with them. However,
volume sources may or may not be continuous through them. Let the
potential fields deriving from sources within and without R be designated
0i and *e respectively, and let 4 = it + 'e" Since *e is harmonic in R

it follows from Green's formula that at any interior point 0 of R

e " 4"" 0) (e )1 dS (4.10-1)

SI..n

where n is directed out of T.

Thus the potential at 0 due to sources outside R (integration volume Te)

is equal to that deriving from simple and double layer surface sources on
I goe "•

S Z of densities 4 n and 4-- respectively, where the doublet
1..n Ts On 4wA

density is positive if doublet alignment corresponds with n.

These surface sources are, for obvious reasons, known as equivalent
layers.

It is easily shown that layers of densities L and likewise satisfy
4w an 4w lkwa aif

the requirement. For the same origin of r within R and integration of

over each of the components of T in turn, Green's formula becomes

0 4 " an 4  *~n" dS for m 1 --- n (4.10-2)

S

and

0 - ' y - +1 LL dS+ fly '- iy;,)n dS

4w an 0 4 n Ia

(4.10-3)
A

where n' is directed into R.
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The surface integral at infinity is zero because f* is harmonic outside R

so that upon subtracting equations (4.10-2) and (4.10-3) from (4.10-1) we
obtain

. an an dS (4.10-4)

S I..nZ

which leads to the result stated.

*and -# refer to values actually obtaining upon S I since the

components *i and #,. together with their normal derivatives, are

continuous through and upon S, in spite of possible discontinuities of p.

It is evident from the considerations of Sec. 4.5 that an infinite number
of equivalent layer combinations exist, having the densities

14 Lf e + !U- and - L•-T (#e -U)4u andD

where U represents a set of functions harmonic in the regions comprising
aU

T a, and is the single-ended derivative on S..E. A solution of the

Dirichlet or Neumann problem for an individual region permits of the
elimination of the double or simple layer upon the associated surface.

The above analysis includes the cases of interior and exterior
equivalence when only one bounding surface is involved. By deleting the
surfaces S .. n and identifying E with the given surface S we see that the

potential within the enclosure due to sources outside it is duplicated by
that of surface layers of the prescribed densities where the positive
sense of the normal is directed out of the enclosure. If, on the other
hand, the surfaces S2..n are deleted and Sl identified'with S while E is

removed to infinity, the potential outside the enclosure due to sources
within it is seen to be duplicated by that of the prescribed surface
layers, where the positive sense of the normal is directed into the
enclosure. Hence, if the layer densities are expressed in terms of the
total potential and its normal derivative on S, the magnitudes of the
equivalent layers are unchanged in passing from the problem of interior
to that of exterior equivalence, for given interior and exterior sources,
but the polarities are reversed.

The foregoing results are embodied in part in the following equivalent
layer theorem.
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Theorem 4.10-1

If sources of potential exist within and without the region bounded by
the set of surfaces S I..n, the potential within the region resulting

from exterior sources is identical with that deriving from simple and

double layer surface sources on S1 .E of densities I and -#

respectively, where the positive normal is directed out of the region
and * represents either the potential of the exterior sources or the
total potential.

Equivalent layer theory has a wider significance in certain physical
applications than appears in the above considerations. It was pointed

out in Ex.3-31., p. 210 that the velocity field v of an incompressible
fluid undergoing irrotational motion could be expressed as the gradient
of a scalar point function * which is everywhere harmonic within the
field of flow except in a neighbourhood of a source (or sink) or upon a

surface of discontinuity of v. Suppose that the closed surface S bounds
a region free from fluid sources and surfaces of discontinuity of v.
Then

0= ý Tw 5n 4W an

S

Since, for any given disposition of exterior sources, the field of flow
within S is modified by the introduction of exterior barriers to the flow
in the form of impervious bodies, it is clear that the equivalent
potential sources defined by the above integral take account not only of
the effect of exterior sources but also of the modification introduced by

exterior surfaces of discontinuity of v - this has no parallel in the
potential theory treated above where sources alone produce
discontinuities.

Similar arguments apply in the case of heat flow.

EXERCISES

4-60. Let a closed geometrical surface S be equipotential in the presence of
sources within and without the enclosure. Show that the interior
sources may be removed and a simple layer source of equal total strength
defined upon S in such a way as to leave the exterior potential field
unaltered.

Show further that the potential field within the enclosure may be
everywhere reduced by an amount equal to the original potential of S by
the removal of the exterior sources and the appropriate disposition upon
S of a simple layer source whose total stringth is equal and opposite to
that of the interior sources.

Prove that in each case the required distribution of surface density is
unique.
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4-61. Show that Theorem 4.10-1 applies to logarithmic sources in the plane
provided that contours replace surfaces, line singlats and doublets

replace simple and double layer surface sources, and L a#', - 2_

1elc a# * 2w 3n'' 2w
replace-w5-' - -

(Proceed from equation (3.9-3), showing that the line integral

is always zero at infinity.]

4-62. Let A and B be points of the plane having the coordinates (+d,O) and
(-d,O). If p, and P2 denote distance measured from A and B

respectively, show that the locus of points which maintain P2 - k(const)! P1
S-I 2dk

is a circle of centre d (k2_) ,0 and radius {(k2-1)2}t. Sketch a set

of these circles for various values of k, noting that those having
reciprocal values of k form mirror images in the y axis.

If logarithmic point sources of strength +a' and -a' are located at A
and B respectively, show that the potential field within the region
bounded internally, or internally and externally, by any two circles is
identical with that deriving from simple logarithmic line sources upon

the circles having the density L , where n' is directed out of the

region. Show further that the potential gradient at any point is
tangential to a circle passing through that point and having AB as a
chord.

[The equipotential contours and those orthogonal to them are said to
constitute a system of coaxal circles having the radical axis x - 0 and
the limiting points A and B.]

4.11 The Method of Images in Scalar Potential Theory

"Whereas equivalent layer theory is primarily concerned with the
substitution of boundary sources for sources which lie outside the region
under consideration, image theory seeks to replace pre-existing boundary
sources by exterior sources. Thus if a region R is bounded by the
surfaces S .. nE, upon which are disposed simple and/or double layer

sources whose potential field is denoted by #.9 we are required to find a
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system of exterior sources of potential *e such that Oe = 0s at interior

points of R. If 0 is the potential field associated with existing

interior sources then an equivalent requirement is that *e + , . #s +

at interior points of R2 0 .

These remarks present the problem in its most general form, but in
practice the situation is rather simpler. Double layer sources are not
normally encountered in image treatments and the number of discrete
surfaces involved rarely exceeds two. Nor are the surface distributions
arbitrarily assigned; the terms of the problem invariably require that
0i + *.0 or its normal derivative, satisfy stated conditions upon the

surfaces.

The validity of a proposed image system, ie system of surrogate sources,
is determined by means of criteria established in Ch. 3. In terms of the
present problem it was there shown that *e and #,. being harmonic in R,

are identical in R, at least to within an additive constant, provided
that

(a) oe #s at all points of S 1..n

or..n

or (b) -- at all points of Sl..n'

or (c) the tangential component of grad * e is identical with that of

grad ,.at all points of S Z, and dS - - dS for each

surface in turn.

For the particular case in which the interior bounding surfaces Sl..n are

deleted, ie when R is aperiphractic, the surface integrals of the normal
derivatives of *e and #8 over Z are necessarily zero and need not be

specified. When R includes all space outside S .. n, is when Z recedes to

infinity, *e and #s are identical in R provided that either (a) or (b) or

(c) is satisfied at all points of the local surfaces. Image equivalence
is often considered complete when it leads to equality of potential
gradients throughout R rather than equality of potentials, in which case
a constant difference of potential is of no significance.

20. It is not possible to equate #e and #s upon a bounding surface itself

in the presence of a double layer surface source since # is then

undefined. Similarly ý- is undefined upon a simple layer source. In

subsequent references to the matching of potential functions and their
derivatives over Snj..U In we refer to the limiting values of these functions

as the surfaces are approached normally from within R. Alternatively, we
may identify integration over S .. nE as integration over a corresponding

set of surfaces drawn just inside R.
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Since and its derivatives are supposed to be continuous upon S .. nZ,

the conditions for the identity of *e and 4a (or of #e + * and a + )

in R, as listed above, may be replaced by

(a') #e + #, - *s + ý, at all points of SI..nr

o W) Ln (4e+4i) i n (4s+i1) at all points of S r.n1

or (c') the tangential component of grad(*e4+i) is identical with

that of grad(#s+4i) at all points of S I..nE and

L (4+# ) dS L + dS for each surface in turn.i n (a+i I n 8 s1i

Combinations of these conditions (and of (a), (b) and (c) above) are also
admissible.

It should be noted that the uniqueness theorems developed in Sec. 3.6 for
non-harmonic fields lead to (a'), (b') and (c') without dissection of the
potential functions into harmonic and non-harmonic components.

The term 'image' first arose in connection with the problem of a half
space upon whose boundary plane a simple layer source is so distributed
as to maintain the plane at zero potential in the presence of a point
source within the half space. In this case the potential of the surface
source is duplicated, within the half space, by that of an equal and
opposite point source located at the position of the mirror image of the

21
original source in the plane . (See Ex.4-77., p. 303.)

Image systems are not restricted to point sources. Thus in the above
half space problem an extended object source would demand an extended
image source since matched object/image elements, when taken in pairs,
maintain the required boundary potential. This remains true when the
geometry of the system requires that the object and image complexes have
different shapes (Ex.4-75., p. 302). On the other hand, a single point
source may require more than one point image and possibly an infinite
number, depending upon the nature of the surface sources to be replaced
(Ex.4-76., p. 302 and Ex.4-78., p. 304).

Image methods may be applied to the solution of physical problems in
which the scalar fields under consideration are not primarily defined as

Newtonian (or logarithmic 22) potentials. While we continue to seek a set
of sources whose potential equates the scalar field at interior points of
a bounded region, it may no longer be possible to identify the role of
the Image component as that of a substitute for boundary sources since
the latter may have no physical existence. Consider, for example, the
irrotational flow of an incompressible fluid from a point source of unit
strength in the vicinity of an infinite, plane, impervious boundary.
From previous considerations the velocity field may be expressed as

21. In this connection it should be borne in mind that the criteria of
identity established above are not directly applicable to systems which
involve unclosed surfaces of infinite extent.

22. The treatment of images in logarithmic potential theory parallels
that for Newtonian potentials.
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v- - grad 4

where

(i) • * 0 upon the bounding surface

(2) V2 * - 0 outside the source

(3) ' _ + U within a neighbourhood of the sourcarl

where r' denotes distance from the source and U is some continuous scalar
function.

Now a potential function #, which derives in part from a source of unit
strength coincident with the fluid source and in part from a point source
of equal magnitude and sign in the mirror image position, has the
following characteristics:

(1) n* - 0 upon the bounding surface

(2) V20 - 0 in the half space outside the parent source

(3) s.- L + u, within a neighbourhood of the parent source, where U'rl
is some continuous scalar function

(4) 4 is regular at infinity.

Hence for * regular at infinity, it follows from the arguments of
Sec. 3.6 that # - * throughout the operating half space. The
modification of the point function 4 which attends the introduction of
the barrier to the flow is seen to be paralleled in the mathematical
potential model by the effect of the image source. A similar analysis is
applicable to the steady state flow of heat in a half space of uniform
thermal conductivity contiguous with a half space of zero conductivity.

It will be recalled that the solution of similar problems in Ch. 3, by
means of Green's functions, made use of mirror image points to define one
component of these functions. However, the image point was then required
to mirror the point of evaluation of the field and consequently moved
with it, whereas it currently mirrors the source and remains fixed in
space. Nevertheless, the earlier form of solution may be transformed
easily into the later, as will be evident from an examination of the
solutions of Ex.3-34. and 3-35., p. 211.

The method of images may be extended, in certain cases, to the evaluation
of a scalar field over contiguous regions of space when the field or its
normal derivative is discontinuous through the common boundary. Thus
consider the steady state flow of heat from a point source of unit
strength located at P in a homogeneous half space of thermal conductivity
kj, contiguous with a half space of conductivity k2 . It is known from

the results of Ex.3-28. and 3-29., p. 209 that the temperature T is
harmonic at interior points of each half space except in a neighbourhood
of the source, where it takes the form

ii
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T- 1k + U

where r' is distance measured from the source and U is some continuous
function.

The normal component of the heat flow vector, -k grad T, must be every-
where continuous through the interface for a common sense of the normal,
since there can be no accumulation of heat upon it under steady state
conditions, hence

a (k 3T) .

We will suppose that there is no discontinuity of temperature through the

interface 2 3 so that

AT - 0

Finally, it will be assumed that T may be treated as regular at infinity.

Reference to s simplified form of Theorem 3.6-1 shows that the above set
of relationships is sufficient to define T uniquely throughout all space.
(For this purpose T is identified with V, and k with g; all surfaces
other than Sa and Z are deleted, Sa being identified with the interface

of the half spaces and Z vith a spherical surface of infinite radius
centred upon a local origin.) Now it is easily shown that the
relationships in T are duplicated by a potential function # which is
defined in the k1 half space as the combined potential of a point source
of strength -L at P and a point source of strength kL (kl-k 2 ) at the

Ic1  kj (kl+k 2)

image position P', and in the k2 half space as the potential of a point

source of strength 2-. at P. It follows that # is everywhere identical

with T and that the temperature at any point 0 is given by

T(L + Ik-2
Ic1  Ic r p (kl+k 2) rp,

T 2 1"Ok2 k 1 + k 2 rp

where r is distance measured from 0.

23. This is one of a number of possibilities. See H.S. Caralaw and
J.C. Jaeger, "Conduction of Heat in Solids", p. 23, 2nd ed., Oxford
University Press (1959).
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It will be observed that neither image source is situated in the region
whose temperature it defines; this is clearly a requirement if T is to
remain harmonic at all interior points of the half-spaces beyond a
neighbourhood of the source of heat.

EXERCISES

4-63. A simple layer source is distributed over a spherical surface S in such
a way as to maintain its potential constant in the presence of other
sources. Show that if these additional sources lie outside the sphere,
the potential throughout the region enclosed by the sphere is constant
and equal to its value on the surface, and that if they lie inside the
sphere, the potential at exterior points and upon the surface is
identical with that which would obtain if all source elements were
concentrated at the centre.

4-64. A point source of strength a is located at P, a distance f from the
centre T of a sphere of radius a (>f). A simple layer source is
distributed over the surface in such a way as to maintain it at the
constant potential #s in the presence of the point source. If the total

source strength upon S is ns deduce from the result of Ex.4-63. that

4S " (Ofa s )/a

Show that the potential of the simple layer is duplicated at interior

points of the sphere by that of an exterior image system comprising a

point source of strength - ! at the point P', inverse to P in the

sphere (see Ex.3-33., p. 210), together with a concentric spherical
surface source of any radius d (>a) and uniform density *S/4wd, so that

the potential of the original system at an interior point 0 is given by

40.1 - !-.+o rp f rpt

where r is distance measured from 0.

Use this expression and the result of Ex.4-63. to prove that the surface

density c L a it) at any point Q of the surface is given by

2 ~( 2- 2  + a
La +S

4wa PQd +;;r:

and confirm that the surface integral is equal to aS

4-65. Repeat Ex.4-64. for the case f > a.

Ans: - a+f

4
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The image system comprises a point source of strength - a at thef

inverse point P' together with a point source of strength aS + ! a at T,

so that at an interior point 0

.a _ a _ a,5
r f rp, rT

At any point Q of the surface

- (f 2 -a 2 ) +S + a
-4a Q 41r 4iraf

4-66. A simple logarithmic line source is distributed around a circle r in
such a way as to maintain its potential constant in the presence of
other logarithmic sources in the plane, Show that if these additional
sources lie outside the circle, the potential throughout the region of
the plane bounded by the circle is constant and equal to its value on
the boundary, and that if they are enclosed by the circle, the potential
at exterior points of the plane and upon the circle is identical with
that which would obtain if all source elements were concentrated at the
centre.

[In the second case, make use of the expansion for In p given in Ex.4-9,
pp. 232-3, to show that if * is the potential of the actual
configuration of sources and * is the potential field when all sources

are concentrated at the centre, * - * 0 as 1 and-L (0-)-)O as 1 when

This represents a particular case of the boundary conditions mentioned
on pp. 203-4.]

4-67. A logarithmic point source of strengthc ' is located at P, a distance f
from the centre T of a circle r of radius a (>f), and in the plane of
the circle. A simple logarithmic line source is distributed around the
circle in such a way as to maintain it at the constant potential # in

the presence of the point source. If the total source strength around r
is C'r deduce from the result of Ex.4-66. that

or " - (az'+Q) In a

Show that the potential of the circular source is duplicated at points
of the plane within it by that of a coplanar image system comprising a
losarithmic point source of strength -a' at the point P', inverse to P
in the circle, together with a concentric clrcular source of any radius
d (>a) and of uniform density (a' In I -, r)/2wd In d. so that the

potential of the original system at an interior point 0 is given by

40 . a' In fpPP-- + 0r
fipc

where p is distance measured fromO0.
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Use this expression and the result of Ex.4-66. to demonstrate that the

line density A' (. - A at any point Q of the circle is giver, by

Xa :0(a 2-f 1) r
)Q 21a PQZ 4 . 2wa

and confirm that the line integral is equal to a'

(Hint:

o= UCs + d1 + fcos a+ cos 28--- dB

for f < a]

4-68. Repeat Ex.4-67. for the case f > a.

Ans: *r " -- r' In a -a' In f

The image system comprises a logarithmic point source of strength -a' at
the inverse point P', together with a logarithmic point source of
strength a' + a'I at T, so that at an exterior point 0

r
Pp,

#0- a'a In P-F" (a'+a) In OT

At any point Q of the circle

e~ +6
Ck (f -a2 r_

A "-2wa PQýý 2-"a

-- oOOo --

Exercises 4-69. to 4-71. deal with source systems which may be
decomposed into sets of parallel, uniform, rectilinear elements of equal
length, bisected by a common transverse plane. The analysis of each
system is to be confined to that region about the central plane where
the potential field is sensibly two-dimensional and the non-constant
component of magnitude varies logarithmically with radial distance from
the associated line element (equation (4.2-5)). Planar theorems may
consequently be invoked in proofs of uniqueness, but it should be borne
in mind that the demonstration of exterior uniqueness requires that the
radius of an outer bounding contour be made large compared with the
displacement of the line elements from a central axis; in this
circumstance equation (4.2-5) will continue to hold upon the boundary
only if the length of the system be maintained large compared with the
contour radius itself.

i



300 FIELD ANALYSIS AND POTENTIAL THEORY

4-69. A simple layer source, whose density is a function of angular position
only, is distributed over the surface of a cylinder in such a way as to
maintain its potential constant in the presence of other uniform axial
sources. Show that if these additional sources are exterior to the
cylinder the potential within the cylinder is constant and equal to its
value on the surface, and that if they lie within the cylinder the
potential at exterior points and upon the surface is identical with that
which would obtain if all source elements were concentrated upon the
axis.

4-70. The axis of a simple cylindrical surface source of radius a and length
2c cuts a transverse plane in the point T, while a parallel rectilinear
source of constant density A and equal length cuts it in P, where
PT = f(<a). The surface density on the cylinder is a function of
angular position only, and is such as to maintain the potential of the
cylinder constant and equal to fc in the presence of the line source.

If the strength per unit length of the cylindrical source is X deduce

from the result of Ex.4-69. that c

2_c
=c . 2(X+X ) In a

Show that the potential of the simple layer is duplicated at interior
points of the cylinder by that of an exterior image system comprising an
axial line source of density -A through the point P', inverse to P in
the circular cross-section, together with a coaxial cylindrical source
of any radius d (>a) and length 2c having the uniform surface density

(*2A In ! 4wd In LC, so that the potential of the original system at

an interior point 0 in the transverse plane is given by

*o - 2X In-- ap c

where p is distance measured from 0.

Use this expression and the result of Ex.4-69. to demonstrate that the

surface density a - L a ý at any point Q on the periphery of the

cylinder in the transverse plane is given by

a 2A A+A+A
Q 2ra PQ 21ra

4-71. Repeat Ex.4-70. for the case f > a and the region exterior to the
cylinder.

2A 2c in2_c

Ans: #c * 2A In L-+ 2X ln2
cf c a

The image ayutem comprises a uniform axial line source of density -A
through the inverse point P', together with a uniform axial line source
of density A + Ac through T. At an exterior point 0 in the transverse
plans
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o 2X•ln-P + 2(X+X ) In 2-

At any point Q on the periphery of the cylinder in the transverse plane

- ) + -s
2Q Fra PQ- 27ra

4-72. A point source of incompressible fluid of unit strength is located at P,
a distance f from the centre of an impervious sphere of radius a. Show
that for irrotational flow the velocity field may be expressed as

v - grad *, where * is the combined potential of a unit point source
at P and image sources within the sphere comprising (1) a point source

of strength a at P', inverse to P in the sphere, and (2) a uniform
1

rectilinear source of density - ; whose end points are P' and the centre

of the sphere. (0 represents the Neumann function for the sphere and
exterior pole P.)

4-73. Two simple, circular, logarithmic line sources of radii a, and a 2 have a

centre to centre spacing of g. The source strengths are respectively
+a' and -a' and the densities are so arranged as to make each circle
equipotential. Use the result of Ex.4-62., p. 292 to find the
difference between the potentials of the circles (a) when each is
exterior to the other, (b) when the circle of radius a, is interior to
that of radius a 2 .

[Hint: Combine the data to obtain

a, a2

(a) g - k+ k2  g - k 1a, + k 2a 2

al a,

(b) g - - - - g - k 2 a 2 - k1 al

and solve for ki and k 2 .]

Ans:

(a) I@ = a' in 2 a l - al+V C }

(b) A• = a' in { al &2

where C S g4 - 2g
2 (a�+aj) + (aj-aj)

2

I.
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These results may be expressed more elegantly as

(a) A0 - cosh- 1 tS2 al a2

(b ) A 4 - c' cosh " - { 2 a 2 a l

4-74. A uniform rectilinear source of length 2c and density X lies in the z
axis of Cartesian coordinates and is bisected by the origin. Make use
of equations (4.2-2) and (4.2-3) to show that equipotential surfaces
take the form of prolate ellipsoids of revolution having the end points
of the source as comon foci, and such that the ellipsoid of potential
A In k has an elliptical section in the xi plane defined by

+1) 4k (k-1)

Hence, show that if a simple surface source of strength a is distributed
upon a prolate ellipsoid of revolution of semi major and minor axes a
and b respectively, in such a way as to maintain the surface
equipotential, then the potential of the surface is given by

a a + (a1-b2)½

(a2-h 2)- b

while the potential of any exterior confocal ellipsoidal surface of semi
axes a' and b' is given by

a ln a' + (a2-b0) 1(a2_b 2)h b'.. .

4-75. A uniform rectilinear source of length 2c and density X lies in the z
axis of Cartesian coordinates. A simple layer source is distributed
over a spherical surface of centre (d,0,O) and radius a(<d) in such a
way as to maintain the surface equipotential in the presence of the line
source. If the total surface strength is zero show that the image
system, which duplicates the potential of the surface source at points
outside the sphere, comprises a point source at the centre (or a uniform
concentric spherical source of equal strength and radius less than a)
together with a curved line source which lies in the xz plane and has

2 a
2

the form of a circular arc of radius !- and centre d - 0, 0, •

Determine the potential of the spherical surface.

Ana: 2X slnh- cS~d
4-76. Two spherical, concentric surface sources of radii a and b are

equipotential in the presence of each other and a point source of
strength 0, located at a distance d from their centre, where a < d < b.
If the potentials of the surfaces are a and b find their respective
source strengths. a b
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[Hint: Introduce interior and exterior images P, and q, such that Pl,
in combination with a, renders the inner surface S zero-potential, and

a

ql, in combination with a, renders the outer Sb zero-potential. The

presence of p, upsets the equipotential status of Sb while ql upsets

that of S , but these effects may be cancelled by the importation of

additional images q2 and P2. However, the latter images necessitate, in

turn, the introduction of a further pair, and so on. Show that this
procedure leads to two systems of images whose sums are convergent
series. Set up additional sources to bring the surfaces to the required
potentials, and apply Gauss's Law and the result of Ex.4-63. above.]

Ans: Strength of Sa - a [a-4b b d

Strength of Sb b- t a d+ %

4-77. A point source of magnitude a is located at P, a distance d from an
infinite plane surface upon which a simple surface source is so
distributed as to maintain the plane at zero potential in the presence
of the point source. P' is the image of P in the plane and PP' is
bisected by the plane in the point Q. A hemisphere with Q as centre is
described in the half space R which contains P. If f denotes the
potential of the complete surface source and * that of an image source

of magnitude -a, show that the surface integral (#-#) dS,

taken over the hemisphere, vanishes as the radius of the hemisphere
approaches infinity. Hence, demonstrate that * and * are identical in
R.

Show similarly that the combined potential of the surface source and
point source at P is everywhere zero in the half space containing P'.

[Hint: Let Q be the origin of spherical coordinates and let QP be the

axis from which e is measured. Then # is everywhere finite upon e - 0

and approaches zero at 6 - 1 as re-; further, the symmetry of the

surface density is such as to make # independent of #. The general
solution of Laplace's equation which is compatible with these
restrictions, and which consequently includes the expression for #, may
be shown to be given, for r > d, by

A Al A AS
r a+- Pi(cos 8) +-r P2 (coa n) +01 P3(cos 8)

where A0 , Al, A are constants and Pm (cos ) in the mth degree Legendre

polynomisl in cos 6 (Sec. 4.1).

Express # in the above form with known constants for r > d by means of

equation (4.1-17), and by equating # and # fore 0 show that

A - -a, AR " -ad, A - -ad-

0 mmm l
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so that

(A,-ad) (A3-ad 3)
-r2  rcos e) + -r p3 (cos e)

Hence, show that the surface integral reduces to a series of the form

B1 _ _2  B

R3 + R5 + R7 ---

where B1, B2 --- are constants and R is the radius of the hemisphere.]

4-78. Two half planes, which meet to form a wedge of dihedral angle e, carry a
distribution of simple surface sources which maintain them at zero
potential in the presence of a point source at some point P within the
wedge. Show that if 6 - 1, with n integral, the potential of the

n
surface sources may be duplicated within the wedge by that of 2n - 1
image sources disposed around a circle centred normally upon the common
edge and passing through P. Assume that the potential of the surface
sources is regular at infinity.

Why cannot this treatment be extended to a wedge for which e - 2-, where
m is odd?

Ans: A finite number of image sources, in conjuction with the parent
source, will reduce the potential of the planes to zero, but not all
images will lie outside the wedge, hence it is not possible to meet the
requirement that the potential be harmonic at all points of the wedge
beyond a neighbourhood of P.

4.12 The Vector Potential of Line, Surface and Volume Sources

4.12a The vector potential of simple and double line sources

Let f be a bounded and piecewise continuous function of length of arc s
O measured from one end of a regular curve r, or from a specified point of

it if the curve is closed. Then the Newtonian vector potential at 0 of
the line source so defined is given by

. f ds (4.12-1)

r

where r is the distance of ds from 0.

I is known as the linear source density.
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When Y is everywhere tangential to r

I -o = dr (4.12-2)
0 r

where I is positive or negative according as f has the same sense as dr
or not.

A uniform rectilinear source of density Y gives rise to a vector
potential whose magnitude is equal to the scalar potential of an

identical source of density I, for all orientations of f with respect to
r. A similar equivalence holds for parallel combinations of such sources
where the individual vector densities are linearly related, so that the
analyses of Sec. 4.2 are directly applicable to systems of this type.

The vector potential is logarithmically infinite at points of a line

source where I is non-zero, as in the scalar case.

When the source is closed and of uniform density, and Y is everywhere
tangential to r, equation (4.12-2) may be replaced by a surface integral
in accordance with equation (1.17-1). We have

X I 1 I if dS x grad (4.12-3)

r S

where S is any regular surface spanning r, and the positive sense of the
normal at the surface is right handedly related to the sense of
integration around r.

It follows that a line source of this type, whose dimensions approach
zero and whose density approaches infinity in such a way as to maintain

IS constant24 and equal to, say m, gives rise to a vector potential

A - mx grad (4.12-4)(1 r

for all positions of 0 outside it. This expression is the vector
analogue of the scalar potential of a point doublet, viz p(1).grad 1

25 r
(p. 219)

24. A source of this type will be referred to subsequently as a twhirl'.

25. Since we will not be concerned subsequently with multipole. of order
higher than unity, we will henceforth drop the superscript (1) and express
dipole potential as p.grad

r



306 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.4.12

Two vector line sources may be combined to form a double source. A
uniform rectilinear double source comprises the limiting configuration of
two parallel uniform rectilinear sources of equal and opposite vectorial

line density ±Y and spacing d, where d-O and Yd remains constant and

equal to, say, "L. Here Y is the density of one of the line pair,

arbitrarily chosen and designated 'positive'. The potential at any point
0, not coincident with the source, is then given by

1 - J 11 1- !;1) d. (4.12-5)
0 n

where !-- denotes differentiation along the normal in the plane of the

line pair from the 'negative' to the 'positive' element.

The same expression continues to hold for the general form of line

doublet where L1 is a function of distance along r, and r may be curved

and twisted, provided that equal and opposite source strengths (I ds) are
intercepted in the parent filaments by adjacent normals (cf the
requirement for scalar double layers as considered in Ex.4-12. and 4-13.,
p. 241 and extended below to vector double layers).

4.12b The vector potential of simple and double surface sources

Let K be a bounded and piecewise continuous function of position upon a
regular surface S. The associated vector potential at any point 0 is
given by

T dS (4.12-6)

S

where r is the distance of dS from 0.

The density function K, which may or may not be tangential to S, can be
resolved at all points where it is defined into scalar components, and
these are piecewise continuous upon S. Since

F dS -i dS+if - dSx + -z dS (4.12-7)

S ;-S 
S f d r d ÷ r

and since the component scalar potentials are everywhere finite and

continuous (Sec. 4.3) it follows that A is finite and continuous at all

interior, boundary and exterior points of S.

Two plane, parallel surface sources of uniform densities ±I (where 4 is

the density of the arbitrarily chosen 'positive' surface) reduce to a

uniform double layer source when Kd is maintained constant and equal to,

say, U1 as d4O. The potential at any point 0 outside the source is then

given by
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S f d - -f d dil (4.12-8)

S

where L denotes differentiation along the normal from the 'negative' to

the 'positive' surface.

This continues to hold when U1 is a function of position and the

composite surface is curved, provided that in the latter case the density
of the 'negative' side is so adjusted that if a small closed curve is
drawn anywhere on the 'positive' surface and projected normally onto the
'negative' surface, equal and opposite values of K dS obtain for the two
elements so delineated.

By resolving the vector potential into scalar components and applying the

arguments of Sec. 4.3, we see that A increases by 4wui with normal

movement through the surface from the 'negative' to the 'positive' side

at any interior point of S where U1 is continuous.

4.12c The vector potential of a volume source

Let ' be a bounded and piecewise continuous function of position within a
bounded region of space r. Then the vector potential associated with
this volume source is given at any point 0 by

X0  f ~dT dT if. d+ If dT+~f d, (4.12-9)
T T T T

where r is the distance of dr from 0.

It follows from the considerations of Sec. 4.4 that A is finite and
continuous at interior, boundary and exterior points of r. This remains

true when T is unbounded externally, provided that A continues to be
finite everywhere.

The definitions of partial and cavity vector potential parallel those for
the scalar case.

4.13 Reciprocal Relationships in Scalar and Vector Potential Theory

Consider two systems of point sources of magnitudes a 1 , a2...ai.. . an and

al, a[...a... a' such that no two sources coincide. Then
im

n a

ai i " 41 (4.13-1)

i-I i-I

where #1 is the potential at ai of the sources al...a,' and #i is the

potential at a' of the sources al...a.potental at in
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This becomes evident when equation (4.13-1) is expressed in the form of
the double summation

n a M n

z a, Z3 aj/rai.a, Z a, aji/r a1 (4.13-1(a))
i-i J-I i-i J-1

and subsequently expanded.

If a pair of sources from the two sets coincide in space, then the above
equations continue to hold provided that the infinite components of # and

are deleted, eg if a and a' coincide, then 4p' should be calculated
p q p

ignoring a' and # ignoring a . Similar arguments lead to the related
q q p

proposition: If two sets of point sources of magnitudes a ... an and

al...a' occupy the fixed positions PI... P successively, then
n n

n n

Z a, a, * (4.13-2)
i-l i-I

where a' is deleted in the computation of and ai is deleted in the
ii

computation of #i"

Since equations (4.13-1) and (4.13-2) are consequences of the symmetrical
nature of the associated double summations they are not restricted to
inverse distance (Newtonian) potential functions but are equally valid in
logarithmic potential theory.

It is intuitively evident that these relationships may be extended to
continuous source systems. Thus for non-intersecting, open or closed

W line and surface sources in space, we have

f X s' ds - fl' * da' (4.13-3)

rlI..n 1 .

f a *1 dS - o' dse (4.13-4)

S1..n S1..m

and for volume sources

f ,' dT " f' - dT' (4.13-5)

1l..nl 1..a
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The corresponding expressions for point, line and surface doublets are
found by pairing elements in equations (4.13-1), (4.13-3) and (4.13-4),
which then take the form

n m

pi *grad , > p• . grad# (4.13-6)

i-I i-I

f B . grad 0' ds - f B' . grad , ds' (4.13-7)

.. n1..m

f U dS . grad C' - f S' . grad (4.13-8)

Sl..n Sl1..m

It follows from equation (4.13-8) that for two non-intersecting, uniform,
double layer sources of equal density, the flux through either surface of
the gradient of the potential of the other has the same value.

Since the potentials deriving from piecewise continuous simple surface
and volume sources are everywhere finite, the requirement of non-
intersection of component source regions in equations (4.13-4) and
(4.13-5) is unnecessary, and it becomes possible to formulate the
following proposition: If volume sources of density 0 occupy a region of
space T containing surface sources S .. n of density a and # is the

associated potential function, and if alternative densities p' and a'
give rise to *', then

fa dS+I 0' dr a'*dS + r *T (4.13-9)

T S l.
Sl..n..n

Since the potential of a logarithmic line source is finite within the
source, the corresponding relationship in logarithmic potential theory is

fA *' ds +f 0 0' dS - f A' 4 ds +f a' , dS (4.13-10)

r..n S..n

where A and a now denote logarithmic source densities.

Similar reciprocal relationships occur in vector potential theory. Thus

for two systems of non-intersecting vector line sources of densities f

and Y' and potentials A and V, we have
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fY.A1 do - f .1 ds' (4.13-11)

r n I..m

since this is equivalent to

d . d- ds - I' do ds'

Jr sr ~d a

r...n r. l..m r1..n

where r is the distance between do and ds'.

It is not necessary that the contours be closed or that the densities be
uniform and directed along the contours. However, in the case of two
closed, uniform, vector line sources whose densities are of equal
magnitude and directed along the contours, equation (4.13-11) reduces to

fA'.dr - fA.dr' (4.13-12)

r r'

whence

f (curl A').dS - f (curl A).dS' (4.13-13)

S S'

where S and S' are regular surfaces spanning r and r'. Under these
circumstances the flux through S of the curl of the vector potential of
r' is equal to the flux through S' of the curl of the vector potential
of r.

Relations similar to equation (4.13-11) may be written down both for
surface and volume sources. Since the vector potentials are everywhere
finite for finite, piecewise continuous sources, these equalities hold,
in addition, for alternative source distributions upon given surfaces and
in given regions.

EXERCISES

4-79. Extend the planar form of Green's formula (3.9-3) to vector fields, and
repeat Ex.4-27., p. 257 in this context.

4-80. Show that the vectorial form of Gauss's law in space is

- £ dS - 4w do+ 1 dS+ J

S I..Sl..n

where the line and surface sources of the right hand side are contained
within T and have no point in common with the bounding surfaces SI..•.
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4-81. Show that Gauss's law for logarithmic vector potentials in the plane is

f n de - Z) fP' ds + K' d

r 1 .. nr' S

where

Yf' In 1 ds + In dS

and the line source of the right hand side is contained within S and has
no point in common with r .. nr'.

4-82. The scalar potential of a long cylindrical volume source of constant
density is identical, at points of the bounding surface near the mid
plane, with that obtaining when the source elements are concentrated
upon the axis of the cylinder. The potential upon the inner surface of
a similar hollow cylindrical source is equal to that obtaining upon the
axis.

Prove the above assertions by means of an analysis similar to that
undertaken for Ex.4-69., p. 300. Hence derive, via equation (4.2-5), an
expression for the scalar potential at an interior point of a solid,
uniform, cylindrical source of radius a and length 2c as c-, and write
down the corresponding value of the vector potential when the source

density J is everywhere constant.

Ans: A - i L2 In + a2 - p2

where p is distance measured from the axis.

4-83. By expressing each integral as a double summation, show that

f p grad *' dT - - f p' grad f dT

T T

where f is the potential associated with a volume source of density p in
the bounded region of space T, and f' is the potential of an alternative
distribution p'.

Confirm this result by putting F - grad f and G - grad f' in
equation (1.17-17), transposing the prime, and adding the resulting
equations. Transform the unwanted volume integral into a surface
integral by making use of equation (1.16-5) integrated in accordance
with equation (1.17-5). Then show that the surface integrals vanish at
infinity while the component volume integrals are unchanged beyond T.
(When 0 and p' are discontinuous upon the boundary of r the procedure
should be carried out both for T and for all space beyond T. (On
addition, the surface integrals over the boundary of T cancel because
grad pot p remains continuous at discontinuities of p (p. 278).)]

LL
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4.14 The Divergence, Curl and Laplacian of the Vector Potential of Simple
Line and Surface Sources

4.14a Line sources

It follows from the argument of Sec. 4.7a that at any point 0 outside the
source

divA div ] ds Zds = f I x dO

r r r

y grad ds y f I ds (4.14-1)

r r

where r is directed from 0 to ds.

Similarly Yz I
curl X curl ds = z ds - dsrayo r ao r

- Z f Lo f 0

r

= f Ixgradi ds Y - Tx ds (4.14-2)

r 
r

When the line source is closed and Y is everywhere tangential to it and
of constant magnitude

divA- div I f l• -- Ifi (grad ).dr . - If (curlgrad

r r s

where S spans r but does not cut 0. hence

div A div I d- 0 (4.14-1(a))

r
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In the same circumstances

curl -curl I dr IfL dri (4.14-2(a))

r r

whence from equation (4.7-16)

curl I .- C - grad * - I grad Q (4.14-2(b))

r

where * is the scalar potential of a uniform surface doublet of density I
which spans r but does not cut 0, and which subtends the solid angle a at
0.

The usual right-handed relationship holds between the positive sense of
integration around r and the orientation of the surface doublets.

At points outside r the Laplacian of A is zero because

V2X f ds = f I V2  ds ) 0 (4.14-3)

f r r 0

The Laplacian is undefined upon the contour itself.

4.14b Surface sources

Since A is continuous for normal movement through a simple surface
source, it follows that any tangential derivative of the vector potential
is likewise continuous at each interior point of the surface where it is
defined. The normal derivative, however, is discontinuous. Proceeding
as for the normal derivative of a simple scalar surface source
(Sec. 4.7b) we find that

- A L f dS - -4TK (4.14-4)an an jr
S

where 1 is the local (continuous) surface density, and A-L is the3-A an
increment of y- for positive motion through the surface, with a common

positive sense of the normal on both sides.

At points outside the surface, div A and curl A may be written down by
analogy with equations (4.14-1) and (4.14-2).

div - divf d f grad dS (4.14-5)

S S
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curl A - curl f dS x f K x grad I dS (4.14-6)

S S

For the particular case in which K is everywhere normal to the surface
and of constant magnitude

ds s ) rdiv A - div K f f ( K grad.dS - Kf-- . dS -=

S S S

(4.14-5(a))

curl A = curl K -A - - K dS x grad K - -

S S r

(4.14-6(a))

The latter expression is the vector potential at 0 of a peripheral line
source whose density is everywhere tangential to the contour and of
magnitude K.

If, in addition, the surface is closed, then

div A - div KC - 4irK or 0 (4.14-5(b))

S

according as 0 lies within or without the enclosure, and

curl A - curl K = K J dS x grad! - ' (4.14-6(b))

S S

at all points not coincident with S (from equation (1.17-2)).

Surface sources in which the source density is tangential to the surface
are of considerable importance. For such sources it may be shown that
the divergence of the vector potential is zero at all exterior points

whenever the surface divergence of K (divs K) is zero at interior points

of the surface and K has no component normal to the boundary when the
surface is unclosed. The proof of this proposition is the subject of
Ex.4-88., p. 317.

Both div A and curl A are discontinuous for normal movement through the

surface at an interior point where K is continuous but neither normal nor
tangential to the local surface. It may be shown, in terms of the
notation employed above, that
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r i i A-_

A div A div j r dS - -4t (n.K) (4.14-7)

S

A

A curl curl dS = -4w (ixf) (4.14-8)

S

As in the case of the line source,

V2 - V2 ()dS - (4.14-9)

at points outside the surface.
It is undefined upon the surface itself.

EXERCISES

4-84. Devise an alternative proof of equation (4.14-1(a)) by expanding d
and integrating around r.

4-85. Show that for a disc-shaped source of radius a and constant density K,

the values of div A and curl I at a distance d from the disc upon the

axis are given by

"A (
divA = 2w (n .) 1- d (d o 0)(a2+d2)|

curl A - 2t (nxk) 1 - (d o 0)

where n is directed towards the disc.

Use these results

(a) to deduce equations (4.14-7) and (4.14-8)

(b) to demonstrate that for a plane tangential surface source

A

curl A.2w (nxK)

as the surface is approached from one side or another at an

C; interior point, where I is the (continuous) local surface
density.

tII
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4-86. By differentiation of the derivatives of 1, show that all points outside
the sources

curif 1 do-d- grad f grad 1 do
fr frr r

and

S x grad dS - - gradf grad 1 dS

S S

r and S may or may not be closed, and the relationships continue to hold
for individual source elements.

Confirm the above equations by applying (1.18-5) to (4.14-1), (4.14-2)
and (4.14-3) etc.

Rewrite the second equation in a form appropriate to an open surface

source where K is everywhere normal to the surface and of constant

magnitude, and so derive (4.14-2(b)) by substituting Y for 9.

Show also that

curlf V dS grad-r = -grad V dS . grad

where V is any piecewise continuous scalar point function which is
defined upon S.

4-87. If S is a closed surface source having a surface density K which is

everywhere normal to the surface and of constant magnitude, express the

vector potential of K at points outside the enclosed region T as a

volume integral over T, by means of equation (1.17-5) with V - 1. Then
1r

show by differentiation of the derivatives of 1 that div A - curl A - 0
outside T.

Show further that when 0 is an interior point of T

A - K grad 1 dTf r

T-Td

where T is a 8 sphere centred upon 0. whence

(Z-xf

T-T a



UNRETARDED POTENTIAL THEORY 317

i1

Now develop a field-slipping analysis, as in Sec. 4.8, in which - isi ~(x-x_)r

replaced by 3-, and, by put)ing p - 1, derive the relationship

r3P

T-r S

Hence prove that div A - 4wK within T.

Show similarly that curl A - 0 within T.

4-88. It follows from Ex.2-34. and 2-35., p. 167 that if F is a well-behaved
vector point function which is defined upon the open surface S (but not
necessarily outside it) and is everywhere tangential to S, then

-E f1r diva F dS -
1 j[-- (bj) + a (h Fc) dS

r s S

Let F - - where K denotes surface source density (assumed to be

tangential to the surface) and r is distance measured from an exterior
origin. Expand the resulting equation to show that

!.,n'ds - divs hI + ( 1r dS

r S S

Reduce this to

!., divsiRdS+ K grad dS

S. ds = r

r s S

by showing that

grad i . L +

A A A

where C, C, n form a right-handed set.

Hence show that the divergence of the vector potential of a well-behaved

tangential surface source of density f is zero at exterior points if

dive K is everywhere zero and the surface is (a) closed or (b) open,

with -.' - 0 at all points of r (ie with no component of I normal to
the periphery).
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Extend this result to a surface source which may be divided into

subregions over which diva K - 0 and for which the normal component of
is continuous through internal boundaries.

4-89. A rectilinear source of constant tangential density Y subtends an angle
26 at the point 0 upon a perpendicular bisector of the source through
the aid point P.

Show that
A- 2 sin e -e(1) (curl X) o- ri) d where OP-rrd

(2) the right-handed tangential line integral of curl A around a
concentric circle in the mid plane approaches 4wl as the circle
shrinks about the source.

Show further that in the latter circumstance the contribution to the
integral from source elements outside a neighbourhood of P approaches
zero, and so demonstrate that the above value for the integral continues
to hold at interior points of a curvilinear source having a continuously
turning tangent, where I is the magnitude of the local (continuous)
source density.

Now let the line source be closed and let I be constant. Prove that

curl curl A - 0 outside the source and hence show that the line integral

of curl A around any regular closed curve which threads the source
contour once is equal to 4wI. Devise a simple geometrical construction
to demonstrate that if the curve of integration threads the source
contour n times the corresponding line integral is 4hinl.

Arrive at the same result by working from equation (4.14-2(b)), bearing

in mind that curl X is continuous everywhere outside the source.

4-90. A tangential surface source takes the form of a closed strip having

divs K - 0 at interior points and K parallel to the edge along the
edges. Let a simple closed curve which threads the source once contract
about the strip in such a way as to give rise to matching contour
elements on the two sides, and let P and Q be the points of the curve
which approach the edges of the strip. Make use of equation (4.14-8) to

show that the line integral of curl A around the curve in the PQ
direction is given by

Q ^

- 4w (nxK).dr

P
A

where the'integral is taken over one side only and n is the corres-
ponding outward normal.

Prove that this value of line integral obtains for all closed curves
which thread the source once, and that it is equal in magnitude to

4W x flux of I through any simple curve lying within the strip and
joining the opposite edges.
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4-91. A torus of arbitrary section, whose axis coincides with the z axis of

cylindrical coordinates, carries a tangential surface density K which
has no f component at any point. The magnitude K is a function of p

only, and is such as to maintain diva K zero everywhere upon the
surface. By expanding in cylindrical coordinates, show from symmetry

that (curl A). " (curl X)z - U both within and without the torus.

Invoke Stokes's theorem and the relationship curl curl A - 1 to prove

that (curl A) is zero at all exterior points; by taking account of

equation (4.14-8) in addition, and employing a doubly-bounded surface of
integration show that, for interior points,

4wKo 0o P cons__t

I(curl _), 4" p 0 -

where K is the magnitude of K along a circle of arbitrary radius p0

drawn upon the surface.

4-92. The vector density of a cylindrical surface source of length 2c and

radius a is given by K - tK, where K is a constant. Show that (curl

is everywhere zero, and that at points on the axis within the cylinder

(curl W)z - 2wK (2 - sin 01 - sin 62)

where 61 and 62 are the angles subtended by the end radii.

Prove that (curl A) P0 within a finite distance of the source centre as

c-, and, by expansion of (curl curl A),, demonstrate that under these

conditions • (curl A)z.0. Hence show that for an infinite, uniform,

circumferential source (infinite solenoid)

(curl A), - 4,rK (P<a)

(curl A), " 0 (p-a)

By integrating curl A over a transverse section, derive

A 2wKo (psa)

- • 2wK a 2

'A " 4 - (poa)
0
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4-93. Consider a system of non-intersecting cylindrical surface sources of
arbitrary cross-section and infinite length, aligned with the z axis of
coordinates. These carry (1) a scalar density a which is restricted

only by the requirement that La - 0 everywhere, and (2) a vector density
A 3z

given by K - za. Show that grad # and curl A are orthogonal and of

equal magnitude at all points exterior to the sources and at finite

distance from a local origin. Show also that the flux of curl A through
an axial strip of unit axial width, whose cross-section is a simple
curve which does not cut any source, is equal to the difference of
scalar potential between the end points.

[Note that when a is such as to maintain each surface equipotential in

the presence of the others, the flux of curl A through an axial strip
joining any two cylinders is independent of the position of the ends of
the strip on the cylinders.]

4-94. A cylindrical surface source of radius a and length 2c is centred upon
the z axis of coordinates. The source density is single-valued and

A

given everywhere by z = i f(o). Show that if c- and the surface is
approached along a normal from within and without at finite distance

from the source centre, the limiting values of (curl A)* are given
respectively by

SKdsd - 2,K and K ds + 2•rK

where the line integral is taken around the clyinder and K is the
magnitude of the local surface density. (cf Ex.4-37., p. 269) 0

(Since -R ds :of i dS taken over unit axial length of surface, we may

refer to z ds K do as the strength of the source per unit

length.]

4.15 The Divergence, Curl and Laplacian of the Vector Potential of a Volume
Source

It follows from Sec. 4.8 that both at interior and exterior points of T

X f E dT - f x -- dT - f 2 dSx - - f () d (4.15-1)

T T SI..nI T

provided that p is well-behaved throughout r.

From Sec. 4.9

V2 f dr - 0 at exterior points of T (4.15-2)
Sr



Sec.4.15] UNRTADED POTENTIAL THEORY 321

and

V2fEdr - -4irp at interior points Of T (4.15-3)

Expressions for div pot 'j, curl pot j and V2 pot U are readily developed

by substitution of the scalar components of J foz p in the above
equations. Thus

divfJ dT dTi X dS

div potT - i dT - j dSa (4.15-4)Jr jr

orr

Similarly

curlf !dr a dr -Z dir}

f y ! -Dz dT - j (J dS -J dSzZ TfQ~i r y y z)} 1

1..n
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hence, at interior and exterior points of T,

curl pot - f curl- dT - id§ X (4.15-6)

T S 1..nZ

or

curl pot J " f x grad Id (4.15-7)
T

Div pot J and curl pot U are continuous through S .. nE since each may be

expressed as the sum of the scalar potentials of volume and surface
sources multiplied, if necessary, by constant vectors.

Finally,

,V2/ dT V2 X V xd'•T

T T

whence

V2 pot J - 0 at exterior points of T (4.15-8)

and

V2 pot J - -4wJ at interior points of T (4.15-9)

provided that each component of J satisfies a H6lder condition throughout
T.

Expressions for the divergence and curl of the cavity potential and
partial potential may be developed from the scalar components of
equations (4.8-4), (4.8-5), (4.8-7) and (4.8-8), while V2 cavity pot and
V partial pot follows from (4.9-2) and (4.9-5). Grad div and
curl curl partial pot are subjects of Ex.4-100. and 4-102., pp. 326-7.

The more important formulae relating to the scalar and vector volume
sources are listed in Tables I and 2, pp. 329-333.

EXERCISES

4-95. By treating a closed line source and an open surface source as limiting
configurations of a volume source, make use of equation (4.15-4) to
plausibly substantiate the requirements for source density, as set down
in Sec. 4.14a and Ex.4-88., p. 317, in order that the divergence of the
vector potential shall be zero at exterior points.
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4-96. If mixed volume and surface sources are contained within a finite region
of space and are such that the divergence of the associated vector
potential is everywhere zero, show that the vector potential may be
expressed at interior and exterior points as

IL curl pot curl
4wf

4-97. The vector density of a solid cylindrical source of length 2c and radius

a is given by J - zf(p) where z is axial and p denotes distance from
the axis. If the transverse mid plane cuts the source at z - 0, show
from equation (4.15-4) that for p 2 << c 2 and z2 << c2

- -21 A
grad div A -2 z

where

a

I - f 2rp f(p) dp

0

whence

- 21-
curl curl A - 4J - z at interior points

and

curl curl A - -t at exterior points

It is clear from equation (4.15-7) that curl A has no radial or axial

component. By applying Stokes's theorem to curl A for the region of a
transverse plane bounded by a circle centred upon the axis, show, from
arguments of symmetry, that

(curl A) 2I (1- cos2e)L _ 2 -2 sin e at exterior points
P P P

where 20 is the angle subtended by the axis of the source at the point

of evaluation of (curl

and

(curl )� -�-�- at interior points

* -
i
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where

9

I' -f 2wp f(p) dp

0

Note that (curl X)t is unchanged at exterior points when the source

elements are concentrated upon the axis, and that (curl A).O0 in the

region bounded externally by a hollow cylindrical source of the above
type as c-o-. [For such a source it is clear from equation (4.15-7) and

considerations of symmetry that curl A - 0 upon the axis for all values
of c.]

4-98. Use the result of the previous exercise to show that

-aAzp - 2,rpJ

at interior points of a cylindrical source of uniform axial density J
when the half length c-•, and so confirm the value of the variable

component of A as derived for this case in Ex.4-82., p. 311.

4-99. A vector volume source is bounded by spherical surfaces of radii a, and
a 2 (a 2 >al) centred upon the origin of spherical coordinates. The source

A

density is everywhere radial and given by J - R f(R), where R is
distance measured from the origin. Integrate by parts to determine the
contribution of a spherical shell to the vector potential at points of

greater and lesser radius, and proceed to evaluate A for R < a,;

a 1 5 R 5 a 2 ; R > a 2 . Find div A and grad div A at corresponding points

by application of equations (2.6-7) and (2.6-5).

Confirm the results for grad div A by showing that curl curl A - O at
interior and exterior points of the source (see Ex.1-59., p. 78) and
utilising equations (4.15-8) and (4.15-9).

Ans:

4w a 2

A T R--R] f(R) dR (Rga l )

R a2

RR f(R)-dR+ R f(R) dR (as1 RSa 2 )

(R2 3
sfm) R Rf
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a2

A R -R-f R3 f(R) dR (RUa 2 )

a,

a2

divA - 4wf f(R) dR (RPaI)

a 2

divA 4f f (R) dR (a 1 <RSa 2 )

div A - 0 (R~a 2 )

grad divA - O (R<aI and R>a 2 )

grad div A - -R 4w f(R) = -4w J (al<R<a 2 )

4-100. Show that

grad div (partial) ; dT

T-T a

- f grad div dT - div id grad 3 . dS

TTS E S E5'T S..n Sl..n£

= -fdv3 grad 1 dT + f div dS .Id J.dS grad

T-T S8 S I

By taking the x component of the above expression and making use of the

volume integral of the expansion of div 2- or by working

directly from equation (1.17-15) with F - S and 0 - grad • derive the
relationship
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grad div (partial) f
td6

T--T6

- (J.V) grad 1 dT + div J dS-J.dS grad

T-T S6

4-101. The results of the previous exercise continue to hold when T6 and S6

are replaced by r' and S', where these symbols refer to any regular
region containing 0.

Evaluate Si0 J.dS grad 1 when comprises

(a) a spherical surface centred upon 0

(b) a cylindrical surface of radius a and length 2d aligned with J
and centred upon 0 o

which shrinks about 0 without change of shape.

Hence conclude that the volume integral (j.V) grad dT is non-
r

convergent, and that whereas we may write

graddiv f d -f div ' grad 1 dT + J.dS grad
fr f rI..o r

T T S 1..n E

at interior points of T, it is necessary to express the alternative
form as

grad d Jv f . Lim g 1 Lim •.-- gradSrdiv dr = f'• (J.V) grad-•dr -- S÷O Jd grad

r I -t O r S1+O r

Lim --- 1 4
Aris: S J.dS grad T - j for sphere.

S r 3 o

4w 'i - d for cylinder.
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4-102. Show that

curl curl (partial) f ,dr

T--T

- curl curl J dT - dS x curl T - curl dS x

T-T8 Sl.n SI.z

= - rad 1 x curl dT +f (dS x curl U) + grad!. x (dSxJ)

T-E6S 6S I6-8$ S1..nZ

Make use of equation (1.17-17) with F - J and G - grad - to transformr

the equation into

curl curl (partial) / d

T-Td

" (3.V) grad 1 dr + (dS x curl j) - grad 1 x (dSx0J)

4-103. Evaluate Lim grad 1 (dSxJ) when S' comprisesS'.40 gSfra

(a) a spherical surface centred upon 0

(b) a cylindrical surface of radius a and length 2d aligned with 0
and centred upon 0 0

which shrinks about 0 without change of shape.

Hence conclude from the results of the previous exercise that

curl curl f dT - g rad r x curl dT + grad x (dSxa)
fr r S r t

aT intS p t ,

at interior points of r, and that

-if j Limr - 1 -Limra 1

curl curl dr Lim (!.V) grad dT Li0 grad x (dSxj)

J . )gT T-a' Sd

L~~,mm~m-mwm*
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Limf ~
Arts: LiOm grad ! x (d'xJ) - - 77. for sphere.

S1

S-4 d for cylinder.
0 (a2+d2)f

4-104. Combine the results of Ex.4-100. and 4-101. to show that

72 (partial) d div d9-d xc rl 2 d-S.gradr dT- dv •dS -dS x curl -r 2-

T-T6 S 6

and make use of equation (1.17-13) to reduce this to

V2 (partial) d . (dS.V) 27 dS.grad

7-77 S

-L (1)] dS
s 6

4-105. Transform (j.V) grad - into grad and make use of (1.17-5) to

show that the value of

(J.V) grad • dr - grad

T-T' St77-T Jgrd S

is independent of the shape and size of S'. Hence demonstrate that if
the shape and orientation of S' and its configuration with respect to 0
are maintained constant during the limiting process, then the value of

Lim 1' - I Lim -j.grad 1 dS
T'+0 j (J.V) grad ; dT - S'y+ g r

will be independent of the values of the individual limits.

Show further that this continues to hold when 1.grad _ dS is replaced
1 - / 1 - \ r ( x d ) x g r d !

by Y.d' grad 1 or dS x rad 1 x ) or (Yxd§) - grad r
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TABLE 1

The Scalar Potential Function - dT and its Derivatives

(1)

pot 0 f dT (interior and exterior points of T)

T

C2)

partial pot p - f • dT (evaluated at centre of moving 6 sphere within T)

-r6

(3)

cavity pot p - dr (defined throughout fixed 6 sphere within T)

T-T6

(4)

grad pot p grad d - p grad - d& (interior and
rad f f r exterior points

T S. E T of T)

(S)

grad partial pot p f grad p dT- f S - - grad 1 d, + E dS

1. "1. S E T-T S

(6)

grad cavity pot p - grad dT- dS - -fp grad d¶
T-T S 1..T 6 T-T

(7)

V2 pot P - 0 at exterior points of T

(8)
v2 pot P - -4wp at interior points of T

(9)
v2 pot p - ( - ! dS + pot V2 p (interior and exterior

a \ r an points of T)

1S .. nz

Iimuu m-im lllll~lli ml~ll_
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TABLE I(CONTD.)

(10)
V2 partial pot 0 [n d$ + partial pot V2 p

S1..nE

= k f -P (I)I dS

S6

(11)

V2 cavity pot p - 0

TABLE 2

The Vector Potential Function f dT and its Derivatives

(1)

pot J dT (interior and exterior points of r)

(2)
partial pot dT (evaluated at centre of moving 6 sphere within r)

T-T5

(3) o

cavity pot J ; dT (defined throughout fixed 6 sphere within r)

(4) f
div pot J d,-d dS - J. grad - dr (interior and

r r exterior points

T Sl.nT of T)

div partial pot j - dr , dS - grad dT r + d§

T-• Sl..n a- S a

(6)

div cavity pot - I- dT - dS - - 1 J. grad dT
r r r

T-T6 S..n, S• T-•6
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TABLE 2(CONTD.)

(7)

curl potT - f curl- J dT - 4S )e x grad 1 dT (interior andr r r exterior points
T S.E T of T)

(8)

curl partial pot eurl f dT- dSx = U x grad 1 dT + dS x

T-T 6 Sl..n T-Ta S 6

(9)

curl cavity pot " fcurl-J- d-•Sd • • f~xgrad 1dT-

T-T6 S.n, S6 T-T6
(10)

V2 pot 3 = 0 at exterior points of t

(11)

V2 pot 7 - -4v7J at interior points of T

(12)

Spot Y - 4~-• - !n dS + pot V2J (interior and exterioran r/ r anpoints of r)

S1..nr

(13)

V2 partial pot 6 - [ ( - dS + partial pot i2a

an r Ejd arilpt7

S1..n£

" rT Ton 0 dS

S6

(14)

V2 cavity pot J 0

(15)

grad div partal pot J di, d, + div J dS - J.dS

-T S6 S.
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TABLE 2(CONTD.)

(16)

grad div partial pot 3 - (f .V) grad 1 dr + div " dS + f 4.

T-Tt6  S6

(17)

grad div pot J - f r div J dt - J.dS (interior and exterior
jr r points Of T)

(18)

grad div pot 3 - C .V) grad-•dr- at exterior points oft

T

(19)
f 1 Lim I_--

grad dv pot 7 I ) grad 1 dt + S 0 r 3 J.dS at interiorgra pp f ( r Points of T
T-T' Sw

(20)

curl curl partial pot J7 - x curl dT + 1 (dS x curl J)

t-td S

- x (dlx J)

(21)

curl curl partial pot 3 j (3.V) grad • dT

t-Te

+ i (dS x curl S) + ¾Tx (dSxJ)j

iSr
(22). 6

curl curl pot f dt x (dlx) (interior and

S X cul jr Pexterior points

T S1..E of T)

(23)

curl curl pot 3 f (3.V) grad 1 dT at exterior points OfT
tr
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TABLE 2(CONTD.)

(24)

Lim + 1 Lim Inrocurl curl pt J 1'O (J.V) grad 1 dT+ S'O 7 r 3 x (d~xJ) at interior
points of r.

T-T' S5

(It is, of course, assumed in expressions of thts type that the
dimensions of S' are reduced in such a manner that the limit exists.)

4.16 Equivalent Layers and Image Systems in Vector Potential Theory

The analyses of Sec. 4.5 may be readily extended, via equation (3.3-4),
to the representation of vector point functions as the vector potentials
of simple and double layer surface sources and of volume sources, both
for bounded and unbounded regions of space. This leads directly to a
theory of equivalent layers for those functions defined primarily as
vector potentials. It should be noted that the surface densities of such
equivalent layers are not, in general, directed parallel to the surfaces.

Surface sources are often considered to be equivalent to exterior sources
if the curls of the associated vector potentials (rather than the
potentials themselves) are identical within the bounded region. In this

connection let V be the curl of the vector potential A deriving from

sources exterior to the region R bounded by the surfaces S I..n. Suppose

that div .0 beyond the sources26 Then V is solenoidal in Rbeas --
because (curl A).dS = 0 for all interior surfaces, and
curlV = grad div A - V2 A = 0. Now it is shown in Sec. 4.1727 that in

these circumstances

(nxV)+(nlxV1)- • (nxV)+(n•xvE

4wV = - curl dS .....- curl dS

LS1 (4.16-1)

where the auxiliary functions V1 --- V are the gradient fields of certain
A A

scalar point functions U1 --- UE defined within T --- TE, and nj---nE are

the corresponding outward normals.

Equation (4.16-1) represents V as the curl of the vector potential of
surface sources on S 1.. oE; such sources consequently comprise equivalent

layers in the extended sense of the term. It is apparent that the

surface densities are tangential, irrespective of the orientation of V.
Their surface divergence is zero, as we now proceed to show.

26. See Sec. 4.19.

27. See also Ex.4-115., p. 341.
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A A

Let f, - (nxV) + (n14x1 ). The outward flux of K1 through a small closed

curve r1 drawn upon S1 is given by K1 .nj ds, where nI is tangential to

S1 and outwardly normal to rF. This is equal to

S(V4).U! ds - r (nlxn).(V-VI) ds - (Vr-V).dr

IFI FI

"f (curl V,).dS-f (curl V).ds

where the surface integrations are carried out just inside T, and T

respectively, V1 and V having continuous derivatives up to the common
boundary.

But curl V is zero in T and curl VI - curl grad U1 - O in T1 , hence the

surface integrals vanish and the flux of K, through r, is zero. Since K1

is well-behaved it follows that diva K1 - 0 on S1. Identical arguments

apply for the other surfaces.

The concept of equivalence is sometimes carried still further by
postulating that scalar surface sources are equivalent to exterior vector

sources when the negative28 gradient of the scalar potential is identical
with the curl of the vector potential at interior points of the bounded
region.

If curl A = V then, with div A - 0, curl V = 0 in R, whence for R simply

connected, V - - grad *, where

0 Q F V.d4r, P being fixed in R.

But div V - div curl A 0 in R, hence V2 * 0 O, and

"0 - tdS
0 J47r r 3 n 47r an\\j

S1..n

28. The reason for this choice of sign, which is clearly arbitrary in the
present context, need not concern us here.
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whence

V - grad 4 - r n dS (4.16-2)

S1 .. n S..n

Further, V is solenoidal in R since (curl A).dS - 0 for all closed

surfaces, hence -vdS - 0 over S--S'n in turn. The Neumann problem

may consequently be solved for each of the regions r 1 --- t, and curl

may be expressed as the negative gradient of the potential of simple and/
or double layer sources of S I..n.

It is clear that this result holds for any point function which is
irrotational and solenoidal in R.

It will be recalled that the method of images in scalar potential theory
is concerned with the determination of an exterior scalar source system
which gives rise, at interior points of a bounded region R, to a
potential (or potential gradient) identical with that deriving from
specified surface sources, or their equivalents, on the boundary of R.
The concept of image equivalence in vector potential theory is rather
wider since mixed sources may be involved. Consideration will be
restricted, in the present instance, to the determination of an exterior
vector source system which gives rise, at interior points of R, to

(1) a vector potential which is identical with that deriving from
specified boundary sources

or (2) a vector potential whose curl is identical with the curl of the
potential deriving from specified boundary sources

or (3) a vector potential whose curl is identical with the negative
gradient of the scalar potential of specified boundary sources.

It will be supposed that the divergence of each component vector
f potential is zero outside the source.

As in the case of scalar image problems, the surface densities are
specified indirectly by the requirement that the combined potentials of
these and other sources, or their derivatives, satisfy certain boundary

29
conditions

The relevant uniqueness criteria have been established in Sec. 3.7. Let

Xa and As represent respectively the vector potentials of exterior

(image) and surface sources, and let #s be the scalar potential of
surface sources.

29. Some of these conditions have their origin in the physical behaviour
of polarised systems and can best be appreciated in that context. (See
Ex.4-109. to 4-113., pp. 339-40.)
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(1) Since V2 A = v2A - 0 at interior points of R, it follows from
Theorem 3.7-3 that A - A in R if A - A at all points ofe 8 -- e s
S I..n. This is true whether or not R is simply connected. When
R is bounded internally but not externally the equality will

continue to hold if Rx --A and R2 IL (X-A)I are bounded at
infinity.

It may be noted in this connection that when the sources comprise
parallel systems of cylinders and lines of axially-directed
density, the magnitude of the vector potential is everywhere
equal to the scalar potential deriving from sources of equal
magnitude. As a result, the vector equivalents of Ex.4-69. to

4-71., p. 300 may be propounded and solved by substitution of A

for #, Y for X and K for a, etc, without recourse to a uniqueness
theorem for vector fields.

(2) When it is required that curl Ae - curl A5 in R, rather than

Ae - A., a relaxation of the boundary requirement is possible.

On writing curl A = V and curl A = V we haveC C S 5

curl V - curl V
e s

in R

divV - div 0 0
a 5

It then follows from Theorem 3.7-1 (with V substituted for F)
that

curl A - curl A in a simply connected region R• s

provided that either
A A

(a) n . curl A -n . curl A on S Z (4.16-3)

or
A A In

(b) n x curl Ae -n x curl A on S n (4.16-4)

it being understood that curl A is to be evaluated just inside5

R. The additional requirement postulated by Theorem 3.7-1 in

connection with (b), viz f (curl a ).d§ - (curl 1 ).d for each

surface in turn, is automatically satisfý'ed since each integral
is zero.
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In addition, it is easily shown that

curl X e curl A in a multiply connected region R

provided that either

(c) curl (Ak -4 )is irrotational in R
A A

andn . curl A u . curl A on S .. nE (4.16-5)

or
A A

(d) n x curl A " n x curl A on S..nZ (4.16-6)

(3) Let curl X - Ve and -grad* -s . Then

curlV - curl T 'd
e a

in R

divV - divV - 0

whence, from Theorem 3.7-1,

curl Ae - - grad *s in a simply connected region R

provided that either

A A
(a) n . curl Ae - - n . grad s on SI E (4.16-7)

or

(b) n x curl X a- - -n x grad * on S I.nE(4.16-8)

and grad .d-S - 0 for each surface in turn.

[The latter condition stems from the requirement that

f curl A.dS e - grad *s.dS for each surface.]

Further,

curl AX - grad *s in a multiply connected region R

provided that either

(c) curl A is irrotational in R
Ae

andn. curl A n. grad *on S.E (4.16-9)

II
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or
A A

(d) n x curlA -- n x grad *s on S 1..n (4.16-10)

and f grad *s.dS m 0 for each surface in turn.

In the event that R is unbounded externally in cases (1) and (2)
above, the conditions for equality are maintained provided that

R2 Icurl(Ae-A )I and R2 Icurl Ae + grad s are bounded at infinity.

EXERCISES

4-106. Extend the analyses of Sec. 4.5 to the representation of a vector point
function as the vector potential of simple and double surface sources
and of volume sources, both Zor bounded and unbounded regions of space,
and rework Sec. 4.10 in Lerms of vector point functions.

4-107. Two cylindrical vector surface sources of length 2c, radii a, and a 2 ,
and centre-to-centre spacing g (>al+a 2 ) are bisected by the same

transverse plane. The surface density K is everywhere directed
axially, without axial variation, and is such as to maintain each
surface equipotential in the presence of the other, within finite
distance of the source centre, as c-'. The centres of the circles in
which the cylinders cut the transverse plane are P and Q, corresponding
to radii a, and a 2 , and the strengths of the cylinders per unit length

A L

(ie K ds taken around each periphery) are +z I and -z I respectively.

Show that the value of the vector potential, at points outside the
cylinders, is identical with that deriving from axial line sources of

density +z I and -z I displaced inwards from P and Q by

g2 + af - aj - rC and g2 - al + aj - -C

Zg zg

where C - &4 - 2g2 (a+a) + (aJ-aJ)2

Make use of the result of Ex.4-93., p. 320 and of Ex.4-73., p. 301,
appropriately transformed for a two-dimensional field in space, to

determine the magnitude of the flux of curl X between the cylinders per
unit axial length.

[Hint: Indentify the cross-section in the central plane with the
circles in Ex.4-62., p. 292, taking P adjacent to A and Q adjacent to
B. Show that OP2 - d 2 + aj and OQ2 - d 2 + a4. Hence derive
d - /C/2g.]

Ans: Flux magnitude per unit axial length - 21 cosh- (g-ai-4)
2a 1 a 2

4-108. Confirm the requirements for image equivalence in multiply connected
regions as set down in equations (4.16-5/6) and (4.16-9/10). Show that
identical requirements follow from the results of Ex.3-26., p. 198, and

that a further sufficient condition for the equality of curl X and
i -- i^ -

curlA in R is that n x Ae - n x A upon Ss -l..ns
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4-109. A rectilinear source r of uniform tangential density T lies parallel to
and outside a cylindrical surface source of radius a, centred upon the

z axis of cylindrical coordinates. The surface density K is axially
directed and a function of 0 alone. It is so distributed that

(curl( 1 . 7.As))# increases a times with normal movement through the

surface into the cylinder at any point, where Ar and A denote the

vector potentials of the line and surface sources and a is a constant
greater than unity.

Show that the divergence of A for the individual sources approaches
zero at all points outside them, and within finite distance of a local
origin, as the source lengths extend to infinity in both directions.

Use the result of Ex.4-94., p. 320, to show that the boundary
requirement stated above leads to the relationship

a1a 1 (curl Ar) + f K ds

By taking the tangential line integral of both sides of this equation
around the periphery and integrating the normal component of

curl curl Ar over a surface which spans the contour, deduce that

i K ds = 0, ie the source strength per unit length of cylinder is zero.

Hence show that the tangential component of the curl of the vector
potential of the surface source is duplicated just inside the cylinder

by that of a line source coincident with r and of density

Develop a -niqueness criterion for the two-dimensional fields under
consideration and so prove that

curl (Acr+A) + u A r

at interior points of the cylinder.

4-110. Show that the conditions laid down in equations (4.16-5/6) for the
equality of curl Ae and curl A in a multiply connected region bounded

e s
by a finite source system remain sufficicnt for the region bounded
internally by the infinite cylindrical source system of the previous
exercise if supplemented by the requirement that 0nlcurl(A e-A7 ) be

bounded for large values of p when n > 1. Hence prove that the image
complex whose curl pot duplicates that of the cylindrical surface
source at p > a comprises a line source Inverse to r in the cylinderandof ensty - 1-

and of den1ity a Y, together with an equal and opposite line source

upon the axis.
-aA

[Hint: Evaluate (curl A)9 - Z for object and image systems at
P a. ap

It
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4-111. Suppose that in Ex.4-109. and 4-110. the vector surface source is
replaced by a scalar source whose density a is a function of 4 alone.

and is so distributed that the normal component of curl A - grad 4s is

reduced by a times with normal movement through the surface into the
cylinder at any point.

Use the result of Ex.4-37., p. 269 to show that

2 0 + I a + n . cu r l A r

where q is the strength/unit length of the cylinder and n is the
outward normal.

Prove that q is zero by integration of both sides of the above equation
around the cylinder and by an application of the divergence theorem to
a closed cylindrical surface of unit length. Then show that the
negative gradient of the surface potential is matched at interior
points by the curl of the vector potential of a line source of density

0- 1 T coincident with r. and conclude thatCL 1
2

curl A - grad a + i curl Ar

at points within the cylinder.

Nov use the relationship n . curl A - to show that the negative

gradient of the surface potential is duplicated just outside the
cylinder by the curl of the vector potential of a line source of

density I , inverse to r in the cylinder, and confirm that the

image system for the exterior region is completed by the addition of a

line source of density - a If upon the axis.
a+I

4-112. A uniform, closed, tangential line source r of magnitude I is situated
to one side of an infinite, plane, tangential surface source whose

density K is such that the tangential component of curl(A +A ) is

increased a times with normal movement through the surface from the
half space R containing r to the half space R'. Use a result of

Ex.4-85., p. 315 to show that the surface divergence of K is everywhere
zero.

4-113. On the assumption that R2 Icurl(A-rAj)I is bounded upon the surface of a

hemisphere of local origin as its radius approaches infinity, show that
the curl of the vector potential of the sarface source in the above
exercise is duplicated in R' by that of a line source of magnitude

1 +1 I coincident with r and having the same sense, and in R by that
C + I -

of an optical image source in R', of magnitude a I and so directed

that when object and image sources are resolved into components
parallel to and normal to the plane the former have the same sense and
the latter opposite senses.
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4-114. If the surface density in Ex.4-112. is so distributed that curl(Ar+As)

is reduced to zero just inside R', rather than increased a times, show

that diva R continues to be zero everywhere but that the image source

located in R' is now of magnitude I and of opposite sense to the image

in Ex.4-113.

4-115. Let V be a vector point function, irrotational and solenoidal within

the region R bounded by the surfaces S 1--nI. Show that V may be

expressed within R as

4irV° - - grad (0-U 1 ) ( dS -----. - grad (O-U£) ( dS

S1  I

where

Q

Q f V.dr (P being a fixed and Q a variable point of R)

P

and U1 --- Ur are the solutions of Neumann problems in the regions
T1 -----Ty I

Now use a result of Ex.4-86., p. 316 to show that

S1 (K-U)
4rV° - curl dS x (*-Ul) grad-------- curl dr x grad -

r r

S,

and transform this into

A^ A __ A

where V,1 grad U1 etc.

A

h
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4.17 The Grad-Curl Theorem
3 0

Let F be any vector point function, well-behaved throughout the region T

bounded by the surfaces S I..n; F may or may not be defined outside T.

Let A be the vector potential of T when treated as a volume source of

density F. Since

V
2

A - grad div A - curl curl X

wherever A is well-behaved, it follows that

V2 dT - grad divf dT - curl curl, r

both for interior and exterior origins of r.

Hence

0o} = - grad div f r dT + curl curl f r dT (4.17-1)

T T

where the left hand side is 4JF at interior points of T and zero at
exterior points.

Since equations (4.15-4) to (4.15-7) hold within and without the source
we have also

4_6F - grad j i dTd + grad T .

T S1..nr

(4.17-2)

+ curl f curlFd - curld
f r

T S 1..nZ

30. So called by A. O'Rahilly "Electromagnetic Theory", p. 14, Dover,
New York (1965). It is generally expressed as equation (4.17-2) without
the surface integrals and known as Helmholtz's theorem.
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and

_-o - grad F . grad 1 dT + curl F x grad dT (4.17-3)

T T

or, from equation (4.17-2),

- (div F) 3 dT + F. dS§

T Sl1..nr

(4.17-4)

-f(curl F) xK- d-r+f (d§x~f)
T S l..n r

Equations (4.17-1) to (4.17-4) represent various forms of the grad-curl
theorem.

Now suppose that some point function F1 is well-behaved throughout the
region TI, bounded externally by S1 . Then for an origin of r within T we
have

S- - grad df + grad •.nl dS

T1 S1

(4.17-5)

+ curl fcur 1 dr - curl nxl - S

TI S1

where n 1 is the outward normal from T1 .

On adding equations (4.17-5) and (4.17-2) we obtain an alternative

expression for 4F 0 within T which involves additional volume and surface

integrals over T1 and SI in terms of an arbitrary function F1 . Since the
same treatment can be extended to Tl--Tn (and to the region outside Z so

long as the choice of auxiliary function is such as to maintain the
volume integrals finite and reduce the surface integrals at infinity to

zero) it is clear that any well-behaved function F may be expressed

within the bounded region T as - grad * + curl Q where * and Q may assume
an infinite number of forms. This behaviour parallels that for scalar
point functions as described in Sec. 4.5.
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We are now in a position to demonstrate that a vector point function V
which is solenoidal throughout a region T may be expressed within r as
the curl of a point function (See p. 62).

Since fV.dS - 0 for any closed sur ace which can be drawn within T,

div V - 0 at interior points of T and ;V.dS - 0 for each of the surfaces

"S I..nE in turn. Let U1 be a scalar point function, harmonic in r 1 , and
au &A

such that the outward normal derivative WI is equal to -V.n at all
31 3nj

points of S131. Put V1 , grad U1 . Then

div - V2 U1 - 0 in T1

curl V1  - curl grad U1 - O in T1

A A

V.n - - V.n on S1

Under these conditions equation (4.17-5) becomes

grad~ . n dS - curl n1  x !IdS

S, S1

and on adding this to equation (4.17-2), where div V is already zero,

there is a cancellation of grad C . dS.

Proceeding in the same way for the regions T2 -- T no we eliminate

grad . dS from equation (4.17-2) at the expense of an increased

$2..n
number of curl terms. Finally, let U1  be harmonic in the region T

I __A _A I
outside E, regular at infinity, and such that V *n - - V.n on Z. Then
for this component equation (4.17-5) becomes

31. U1 exists, being a solution of an interior Neumann problem.

I
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-A V
= - grad dS + grad[. dS - curl x- dS

4. V

- curl f x F. dS

But U is regular at infinity, hence R2 1VI is bounded at infinity and

the surface integrals at infinity consequently vanish. Upon suming the

resulting equation with that developed above, grad . d•S is eliminated

r

and V is expressed entirely as curl functions:

jj A

4w-V - curl - V- curl dS(nxV)+(nlxVl)} dS ---

T Sr

(4.17-6)

A A

- curl (nXV)+(nEMVE)) dSJr

Reverting to a general case, suppose that F is defined everywhere within
Z but Is discontinuous or has discontinuous derivatives upon interior
surfaces which we identify with S l..n. Following the procedure adopted

in Sec. 4.5 for scalar functions, we find that Fis given at interior
points of the enclosure, not coincident with S .. n, by

A A

41rF - grad / i F dr + grad -AF~ dS + grad f ~ dS0f rf r -- r

TV S1..n z

(4.17-7)
A A

+ curl r d - curl f dS - curl f-:-dS
TV S. E
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where T' is the set of regions enclosed by E, and A( ) indicates the
increment in the bracketed term corresponding to positive motion through
the surface when the same arbitrarily-defined sense of the normal is

assigned to both sides of the surface32

If there are no discontinuities of F and its derivatives outside E, and
if Z is allowed to expand to infinity, equation (4.17-7) becomes

F IL

div Fn -(F
4Fo - grad j dr + grad dS

Sl..n

(4.17-8)

Scurl crlF -curl dS

SS I1 . . n

provided that the volume integrals converge and the terms involving Z

vanish. This will certainly be the case if 7FIRn is bounded for n > 1

and Rn div F and RKncurl F1 are bounded for n > 2.

By proceeding from equation (4.17-4) rather than (4.17-2) we find that

4wlf -- T (div )'Td¶+ A(F.Ii)'dS

Sl..

(4.17-9)

- (curlF) x 7 dT+ -A(nXF) x dS
SSl..n

provided that Rn div F and Rnlcurl Fl are bounded for n > 1 and IF-O as
R-.o

Since the vectorial content of F and curl F has been ignored in arriving
at the above conditions for validity, the latter should be treated as
sufficient but not necessary.

32. The surfaces S1n are not necessarily closed.
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F 1
4.18 The Gradient and Laplacian of the Scalar Point Function P.grad ;

Let P be a vector point function, well-behaved throughout the region T

bounded by the surfaces S I..n, and let r be the distance of dT from the

point of evaluation 0. Then fP.grad dr defines a scalar point
r

function which is identical with the sum of two Newtonian potential
functions and is everywhere convergent and continuous. This may be
demonstrated as follows:

When 0 is exterior to T we have, at interior points of T,

div div P + P.grad-
r r r

whence

div F dT = .dS " di- f d, + P.grad 1 dT
f r rr

T S Z.n T T

or

f 1 f (-di , F-)
fP.grad dT - dT + n . dS (4.18-1)

S 1.n

Hence at exterior points of r the integral under consideration is equal

to the combined potentials of the volume source T of density (-div P) and
_ _ A

the surface sources S1 .. nZ of density Pn - P.n where n is the outward

unit normal from T.

When 0 lies within T the integral fP.grad dr is improper. Let 0 be

an interior point of the region T' bounded by the closed regular surface

S'. Then corresponding to equation (4.18-1) we now have

f.grad ldT- f (-div P) dT + EA.d + !.d§ (4.18-2)

-T S'

As S' shrinks about 0.f (di r) dT converges for reasons discussed in
r

T-T

Sec. 4.4 and !.d-S+O (see Ex.4-117., p. 354).
S

S1
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Hence at interior points of r

P~rd1d .grad 1 dT - ( divP
LIZO P adx ~ rddr - f dr + ,.dS (4.18-3)

-r-0'0 r r rI rn

T-,T T S. E~
2

This relationship may be shown to subsist upon S1 .. n, so that

f P.grad 1 dr is everywhere equal to the sum of the potential

functions described above. We will consequently refer to it as a

potential function3 3 . It is everywhere continuous, but its normal
derivative is discontinuous upon S .. nZ by -4 Pn for a comon positive

sense of the normal on both sides.

4.18a Gradient of fP.grad 1 dT at interior and exterior points of r
I r

T

It follows from equations (4.18-1) and (4.18-3) that at interior and
exterior points of r

Pd-ivP d + grad -. dS

grad P.grad 1 dT - grad +

I r f ri .
T T S E:

-A

whence from equation (4.7-7) with P.n substituted for a, and from (4.8-1)

and (4.8-12) with (-div P) substituted for 0

grad fP.grad d dT f (-div F) r dx P.dS+ (4.18-4)

T T S 1..n2:

33. f 1
At exterior points of T, P.grad 1 dr is-the potential of a limiting

f

configuration of scalar point doublets within T, and it is in this context
that the function usually arises (see Sec. 4.20a). At interior points of
T, however, the potential of such a complex is indeterminate, but we may
continue to manipulate the integral independently of any such
interpretation.

MU
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A-lternatively, since equation (4.8-10) applies at interior and exteriorpoints of T,

grad F I. grad dT Sddv P d- + d!-i? -9+ F~-

ra] Pga dr r f r i rS

T S1 ..n z S I. .nL

(4.18-5)
Again, by combining equation (4.18-4) with (4.17-4) we obtain

grad fP.grad d dT f (curl P))x dT - f(dlxP)xc at exterior pointsr dT - l (dX)-

S 1.n1. n

(4.18-6)(cr Fx d - CSF pitf (curl P ~ dr - f d~x•)x + 4w-P at interior
points

S z..1.°n

(4.18B-7)

Finally, from equation (4.17-3),

grad fP.grad dr - - curl FPgrad dT at exterior

fr pointsT

(4.18-8)

" - curl fPxgrad 1 dT + 40P at interior
points

T

(4. 18-9)
4.18b Gradient of cavity potentia J P.grad r dr

T-T 6As in Sec. 4.8 the cavity potential is defined at all points of a fixed 6sphere within r, so that In accordance with equation (4.8-2) the sourcesystem now reduces to a volume source T-T6  of density (-div F) andsurface sources S rn•, S6 of density P.n, the point of evaluation being
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exterior to the region of integration. Various expressions for

grad (cavity P . grad dt may be obtained by appropriate amendment of

the results for grad grad dT at exterior points of T and these

expressions will hold at all interior points of the 6 sphere. We get

grad (cavity) J . grad

r-~
T-6

(4.18-10)

-J(-div F) dr + Fa

T-T Sl..nZ, S6

__rad __ dI • div-

fgraddv~ dT + rd F d-S + F.d•s (4.18-11)r r

Sax S1 .nE, S6 S.E, S6

- f(curlf) x dx (4.18-12)

T- Fxra S..nE, S6

curlf d (4.18-13)

T-T6

It follows from equation (4.18-10) that when the gradient of the cavity
potential is evaluated at the centre of the 6 sphere

60Lim grad (cavity) j grad r d

t-t6

- -dvF) Ld frS +Lim P~s(-iv d- + F.as + n .dST

T S .. nE S

grad F . grad 1 T - (4.18-14)

T
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This result, which is of considerable importance in the theory of
polarised systems, contrasts with that found in Sec. 4.8 for a simple
volume source, viz.

Lim grad (cavity) dr = grad rd

T-T

dd
4.18c Laplacian of f .grad dT at interior and exterior points Of T

r

From equations (4.18-1) and (4.18-3)

V2  P . grad dr V (-divT) dT + V2 . dS

f r r r
T T S .. "nZ

But

V2 4 - f=.dSv2( -0

S l..n Z S I..n Z

hence, from (4.9-1) and (4.9-4) with (-div T) substituted for p,

V2  F . grad - dT - 0 at exterior points (4.18-15)J . r
T

V2 J P . grad dr - 4w div P at interior points (4.18-16)

4.18d Laplacian of cavity potential P . grad 1 dT
r -T-T8

From equation (4.18-2)

V2 (cavity) F grad1 dT V -
2 (cavity) (-div P dr + V2  d§

T-T T- S1.n, S6
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But

72f AdS -f.d-SV2(! 0

Sl..nE, S S..n Z, S6

since the 6 sphere is fixed in space,

hence from equation (4.9-2)

V2 (cavity) . grad d - 0 (4.18-17)

T-T 6

4.18e Discontinuity of grad P . grad dT at the bounding surfaces

T

We have

A

ra F P. grad 1dT - gradf (-divP)d~rd.dgrad PT + grad dS

T T S 1..n z

A

where n is the outward normal from T.

The first term of the right hand side is continuous through SI..n Z since

it comprises the gradient of the potential of a well-behaved volume

source of density (-div P). The second term is discontinuous since it
comprises the gradient of the potential of a surface source of density

P.n. In accordance with the findings of Sec. 4.7b this term suffers a
_ A Adiscontinuity of -4v(P.n)n with movement through the surface out of T.

4.18f The partial potential and its derivatives

Use of the transformation (4.18-3), coupled with the results of
Sec. 4.8, has rendered it unnecessary to invoke a partial potential or

its derivatives in the determination of gradJ P. grad 1 dT and

V2  grad 1 dT at interior points of T. Such point functions may,

T

of course, be employed, and the manipulations involved in their
derivation afford useful practice in handling this branch of potential
theory. Accordingly, a number of exercises at the end of the section are
devoted to the topic, and are set out in some detail to assist the
reader.
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EXERCISES

4-116. By means of an analysis similar to that employed in Sec. 4.4 in

connection with the improper integral r 2dT show that
(x-xD 0 ) 1

Px x d (and consequently . grad dr) is convergent at

T T

interior points of r.

4-117. Show that, for any closed regular surface S, the integral d§

S
approaches zero as S shrinks about the origin of r, and that

consequently integrals of the type dS and i d

S S
approach zero, provided that F is finite and continuous at the origin.

[Hint: Express L- as the volume integral of grad 1 between S and anr r

S
included spherical surface centred upon 0, and show that its component
scalar magnitudes approach zero as these surfaces shrink about 0.]

4-118. Demonstrate that (4.18-3) continues to hold at boundary points of r.

4-119. Prove that

j xo P T . grad 1 dr = f P. grad rx d)

at exterior points of T.
(x-x)

Expand div r P and integrate over T to obtain

F rad 3 d x " r- - " C ~S - r f d iv T d T

T SlI..n• Z

and hence obtain grad .grad I1Ti h or 41-)

r

4-120. By writing

grad (partial) P.grad (-d x

grad (partial) ga(-d P) dP + grad -drS + grad (4.1d8

r

grad6 Sa P .U£ g6rd d

- gra (patial F Cdv ~ r + rad 4 dS +gradcfi

• ,jr.,jr
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show that

r
grad (partial) P7 grad 1 dT

fr-T 6

(-d dS +J P.dS + grad . dS

T-T Sa S S6

Bearing in mind that the 6 sphere moves with 0, derive the relationship

grad . 1iS1 - •P , ! dS + n d + z- dSz
j r r Tx- x ax y ax

I . d $ a

and combine this with the x component of the remaining surface integral
over S6 to obtain

L {(7 x grad P)-(dS x grad P

S 6

Make use of equation (1.17-2) to show that this is zero, and hence
obtain

gra 1 dT (-div T) d ~-§rgrad (partial) jP grad Pdr - P) dT + P.dS

I-r 6  rr-r Sr

4-121. It is possible to derive the result of the previous exercise without
making use of the initial transformation (4.18-2).

Write

grad (partial) P . grad 1 dr

f- r

-grad (partial) ypX + Py ý + Pz --N dT

T-6

L+
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and show that the field-slipping technique developed in Sec. 4.8 for
the evaluation of grad partial pot p can be applied to the evaluationF (,-x ) x-x

Poof grad (partial) P x r dr, since r 3  remains constant for each
T--Ta

volume element during the slip. Hence derive

grad (partial) P. grad 1 dT

p f(x-x ) (Y-Y°) (z-z )
r grad P x -r grad P+ 3 gradP dz

T-T6

+ p t o+P (FYo)+ (-!2) d

S I.n1I. .nE

(x-x)
Integrate grad r

3  
Px and its expansion over -r-6, combining the

r
resulting equation and similar equations in (y-y0) and (z-z ) with that
above to get

grad (partial) P grad 1 dT
Jr

(KI)(y-y )Z 0-" Px grad r 3  
+ Py grad r3 + Pz grad r3 I dT

jTrTraua r3  z r r Ju

ýP (x-x) (y-y ) (z-z )

rX9x + +Py r3 + P z - ý
s 6

(y-y ) (x-x )
By noting that L shwt•totheyx-co.ponhnh

5xyex component
of the above expression may be written as

(x-x)
P grad 3 dr +fP . grad- dS

T-T• S

5lmm
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(x-x )
Utilise the integral of div r P and its expansion over T--T6 to

replace this expression by

(x-x ) £(x-x ) ((x-x)__
3 div P d + P.dS + P.dS + P grad1 dS

- r r L r r xr

r-r S E SS - 6 1I . . n " S6

Hence show that

grad (partial) F . grad- dr

T-T 6

d r P r (

T -1 6 e l . . n E S 6

11 r
"T-T 6 SI..E

since ds x grad

Make use of equation (4.17-4), modified for an integration region T-T6and surfaces S E. , S 6 to derive from the above result

grad (partial) P grad dT

JrTT-T6

since d9) x gra dT on'xý x

T-T6 e 6 .. nE 6

4-122. The major portions of the analyses of Ex.4-120. and 4-121. remain valid
when the excluded region T 6 is neither spherical nor centred upan 0.

It is only in the last lines of the analyses that the properties of the
sphere are invoked in order to eliminate certain terms. On this basis
it would be expected that

i {d {(partal J P rdS x grad

S S

TI-T
6 - mu. .
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where S is any regular closed surface and the origin of r is not a
point of S.

Devise an independent proof of this.

4-123. Show that div grad P . grad dr - 0 at exterior points of T byr

evaluating div (-div P)-r3 dr + div fP.d S at exterior points.

T S1..n "n

4-124. From equation (4.18-2)

V2 (partial) P grd

T-T6

V2 (partial)f (-div) d+ V2f . ds +V2 dS

T-S 1..n E S a

Show that

(1)

V2 (partial) (-div P) dT

Ir

fV
2

(div dT +fij grad div P- (div P) grad S. d

T-Tr S I Ir
6 1..n

- divP(grad !). dS-9 (grad divP).dS

S6  S6

(2)

V2 dS -0
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(3)

V2  . df - (V2-).dS

Sa S6

" 1 (grad div P).dS - f (curl curl P).dS

S a S s

By integrating curl (curl - and its expansion over S6, show that

- r (curl curl P) .dS = (curl P). x grad

S6  S

Hence derive

V2 (partial) . grad 1d =d f (-div P) r . dS + (curl P).(S x grad

T-T6 S6 S6

. (-div F) r

4-125. Derive the more general result of the previous exercise (which does not
require that S6 represent a spherical region) by working from the
general form of grad (partial)] P. grad 1d as developed in

J1 r
.• ~~~~~T-T6 sdvlpdi

Ex.4-121., ie by expanding

div (partial) (-div F) 1 dT + div f. dS r' + div F x dS x grad

T-T Sl. S6

Firstly, transform dlv (partial) f(-div F) r dT by means of the

field-slipping technique into

(grad div i) .grad dT div T grad .S

T-Tj Sl..n£
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and by integrating div (div Fgrad _ and its expansion over -

transform this in turn into f(-div P) ~.d
Sr

Secondly, show that

divFP.dSXY - 0

SI..n£

Thirdly, bearing in mind that P alone is a function of xo, develop the
relationship

S8 S8

(aP ap ap

-- !d - dS + --! dSJS 6

and transform this into

Z (curl P)x (d x grad = (curl 7) x grad

s 6 S6

4-126. In Sec. 4.18b it was stated that

6-0 r - o
s6

where 0 is the centre of the 6 sphere.

Prove this.

4.19 The Divergence, Curl and Laplacian of the Vector Point Function 3 4

Jx grad 1 dT

I 34. The reader will notice the parallel nature of the treatments in
Sacs. 4.18 and 4.19, even to the extent, in part, of a common wording.

I I I
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Let 4 be a vector point function, well-behaved throughout the region r
bounded by the surfaces S1 .. z, and let r be the distance of dT from the

point of evaluation 0. Then Mx grad 1 dr defines a vector point

T

function which is identical with the sum of two Newtonian potential
functions and is everywhere convergent and continuous. This may be
demonstrated as follows:

When 0 is exterior to r we have, at interior points of T,

curl curl M + rad x
r r(

whence

curl -d - dSx - curlM d + (grad x dTf r r

or

f H grad 1dT - ft culd+f X !nds (.91
T T SI..nz

Hence at exterior points of T the integral under consideration is equal

to the combined potentials of the volume source T of density curl R and
A A

the surface sources S1..nE of density M x n, where n is the outward unit
S~normal from r.

n o m a f r m T q x g a d T i s im p r o p e r . L e t 0 b e
When 0 lies within T the integral f x grad

sn interior point of the region T' bounded by the closed regular surface
S'. Then corresponding to equation (4.19-1) we now have

f x grad d - curlR dT - FdS x FdS x (4.19-2)

r-T' T-T' S S'

As S' shrinks about 0, 7curl-- dT converges and f •dS x -0 for reasons

T-i' pt
discussed previously (Ex.4-117., p. 353). Hence at interior points Of T
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Lim F• x grad 1 E xgrad dT - curll dT- •£dx X

T" r r j f r

T-T ' T T S1 •.n

(4.19-3)

This relationship may be shown to subsist upon S .. nE, so thatf x grad 1 dr is everywhere equal to the sum of the potential

T

functions described above. We will consequently refer to it as a

(vector) potential function3 5 . It is everywhere continuous, but its

normal derivative is discontinuous upon S1 I..n by -4ir(Mxn) for a comon

positive sense of the normal on both sides.

4.19a Divergence of i x grad - dT at interior and exterior points of T
TI r

T

From equation (4.15-7) with R substituted for

curl dT x grad rT
trT T

at interior and exterior points of T,

hence

div x grad 1 dT - div curl • dT = 0 (4.19-4)

rrT T

f wherever it is defined.

4.19b Divergence of cavity potential M x grad 1 dT

T--T

Since the 6 sphere is fixed in space, the point of evaluation is an
exterior point of the region of integration in the sense of the preceding
sub-section, and the same result applies, viz.

35.
At exterior points of T, N x grad dr is the potential of a limitimg

J

configuration of whirls within T (p. 305) and it is in this context that
the function usually arises (see Sec. 4.20b). At interior points Of T,

however, the potential of such a complex is indeterminate, but we may
continue to manipulate the integral indpendently of any such

interpretation.

A - ni



362 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.4.19

div (cavity) H x grad 1 dT - 0 (4.19-5)

T-T a

4 .19c Curl of 1 x grad dT at interior and exterior points of T
- r

T

It follows from equations (4.19-1) and (4.19-3) that at interior and
exterior points of T

curl ix grad 1 dT - curl -- ldT + curl x ndS

T S S1..n E

whence from equation (4.14-6) with M x n substituted for K and from

(4.15-7) with curl i substituted for

curl Mx grad dt - - (curl R) x r d + (d§xR) x 3fr fP ir3

ST S..n

(4.19-6)

Alternatively, from equation (4.15-6)

curl x grad1 curl curl d dx curlM -+
rr

T T S1..nr S1..nu

(4.19-7)

Again, by combining (4.19-6) and (4.17-4), with R substituted for F, we
get

curl] Rx grad d - f (div R) d¶dT f .dS r at exterior points

S S
T T S1..nE

(4.19-8)

-f(div R) dr d i .dIS j + 451M at interior
pointsT S .. r

4..n

(4.19-9)
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Finally, from equation (4.17-3),

curl x - grd.fd grad 1 dT at exterior points
r rr.

T T

(4.19-10)

grad grad cIT + 4wM at interior
S-rd pointsT

(4. 19-11)

4.19d Curl of cavity potential f x grad
T-T 6

The appropriate expressions may be derived directly from (4.19-9) to
(4.19-11) by taking account of the alteration of integration volume, the
introduction of the additional S and the exterior nature of the point of
observation. We have

curl (cavity) f x grad 1d = - (curl R) x MId +f (dfx-i) x

-T6 T-T 6 S1 .n•, S6

(4.19-12)

f(curl curlr) dT dsx + (dSxM) -x
J rJ r i1 1  ra

T-T 6 Sl Z' SS. .n, S6 . 6

(4.19-13)

- f (div R) dr - 5T H.d d (4.19-14)

T-TS Sl..nZ' S6

- - grad H . grad dT (4.19-15)

T-T 6

It follows from equation (4.19-12) that when the curl of the cavity
potential is evaluated at the centre of the 6 sphere

Spotntia cenre sher
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Lim curl (cavity) x grad-dr

T-Tf6

(curl R) x X• dr + (dSxM) xI + Lmf (dSxR) x-

T S Z S6

(4.19-16)f 8-

curl R x grad dTr - M

Like equation (4.18-14), this result is of considerable importance in the
theory of polarised systems. It may be contrasted with the result found
in Sec. 4.15 for a simple vector volume source, viz.

Lim r J
Lim curl (cavity) - dr - curl - dr

6-~ Ir fr
T-T 6

4.19e Laplacian of R x grad - dr at interior and exterior points of r4.9 Lpaca f • rad

T

From equations (4.19-1) and (4.19-3)

M2 R x grad 1 dr - Vd V2 d9xR
r J r j r

T T S I..n E

But

SV2 f nI S. R . V2
S ..n E 1..nZ

hence from equations (4.15-8) and (4.15-9) with curl R substituted for

V2 f x grad dr - 0 at exterior points (4.19-17)
rr

V2 f R x grad I dr - - 4w curl R at interior points (4.19-18)

T
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f 1 dI

4.19f Laplacian of cavity potential H x grad - dT

From equation (4.19-2)

/ 'curl M dr 2

V
2 

(cavity) I x grad! dr V
2 (cavity) c rV2 4dSX

r f r

T-T6 T--Tr S E, S6

But

,V2 j CS (~xi V2 (,1)
S l..n, S6  S..n E, S6

since the 6 sphere is fixed in-space. Further, each of the scalar

components of V2 (cavity) curl • dT is zero in accordance with (4.9-2),

hence T 6

V2 (cavity) x grad d 0 (4.19-19)

T--T6

4.19g Discontinuity of curl f x grad dT at the bounding surfaces

T

We have

A
r dT - curl. curlMdT+curl ndS

curl curld + curl j r

T T S l..n X

A

where n is the outward normal from T.

The first term of the right hand side is continuous through S .. nE since

it comprises the curl of the potential of a well-behaved volume source of

density curl M. The second term is discontinuous since it comprises the
_ A

curl of the potential of a surface source of density M x n. According to
AX A

equation (4.14-8) it suffers a discontinuity of -4w(n x(Nxn)) with outward

movement through S.., and this may be written as -4wMt, where M is

the vector tangential component of M.
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4.19h The partial potential and its derivatives

Exercises involving the derivatives of the partial potential are
introduced in the following pages. In these exercises, terms which1

include the factor dS x grad 1 have been left intact (despite their being

zero at each point of S) in order to confirm, via equation (1.17-2), the

convergent nature of the associated volume integrals at all points where

R is well behaved.

Formulae developed in this and the preceding section are brought together
in Tables 3 and 4, pp. 373-8.

EXERCISES

4-127. Prove that div f x grad 1 dr - 0 at interior and exterior points of
rr

r by taking the divergence of equation (4.19-1) and utilising (4.15-4),

together with the integral over S 1..n of curl and its expansion.

4-128. Expand

div x grad 1 -x [My Mz.- 3 ( dr

T T

at points outside r by differentiation of the derivatives of 1 and so

show that div f x grad 1 - 0 at exterior points.

Tr

4-129. Expand

div (partial) x grad! dT- (partial) fLM () M ) d

T-T 6 T-T 6

by the field-slipping technique to obtain

f (grad +). (curl R) dr - x(Mx grad ds
- S..n

By expansion and integration of div (curl R over T-T and curl R over
S. .nE, reduce this to r r

(curl i) . dS - g .(grad fXdC)
Sd S6
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4-130. Obtain the result of the previous exercise by writing

div (partial) R x grad 1d

T-T 6

div (partial) curl dt - div d-S x-div •dSx

T-T 6 S .n6

in accordance with equation (4.19-2). Bearing in mind that the 6
sphere moves with 0, show that the above expressions may be brought
into the form

(curlH) dS+f(dSxM) grad --

S1..nE S1 .. n E: 6

Integrate curl - and its expansion over S.. to demonstrate the

mutual cancellation of the first two terms, and show that the third
term may be expressed as

(curl R) dS - r x d

S6 S 6

4-131. Substitution of R for J in the expression for curl partial pot J in
Table 2, p. 331 yields

curl (partial) d' x grad 1 dT + d-S x

T-T6 T'T 6 S6

Obtain the result of the previous two exercises by taking the
divergence of both sides of this equation, bearing in mind that the 6
sphere moves with 0.

4-132. Expand

/ • • • c""grad 1 dT' - Rxo gra (1 d)
curl f x grad

1 
dr 7 j [ dr - r grad)

r 0. r z d 1
T T T .
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at exterior point of T by differentiation of the derivatives of - to
obtain 

r

curl j x grad d - grad M. grad 1 dT

T T

4-133. By writing

curl (partial) x grad 1 d-

rrt• -T 6

curl (partial) curl R 1£• - curl x -S c
f curl 

)

T-T 5 Sl.n S

and making use of the volume integral of curl (curl R) and its
expansion over T-r 6 , show that r

curl (partial) M x grad dr

T-T 6

d x curlH f(curl M) x' dT + (d-xM) x -curljd§ x R

S 6 -T 6  Sl Z S6

Expand the last term (moving 6 sphere) and combine with the first to
reduce the above expression to

f +(dxgrad ( - (dSxgrad My).)

T-T Sl 1.. nI S6

Show that the final term may be replaced by

ZTf (d-9 x M grad 1)- (d.9 x grad 1)I- jRx ( x grad

S S6
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4-134. Make use of the field-slipping technique to expand

curl (partial) j x grad 1 dr

f-T 6

f( 2- f (1) -, M fT (M?•'
Lj ý y r yU r) az°0 ,D x az

T-T6 a-z8

and show that the result can be brought into the form

(div dT - R.(S 'i + S ra
T-T6 S .. nE S6

Transform this via equation (4.17-4), modified for an integration
region t-Ta and surfaces S I..n I, S, into

-f(curl R) x -d-r + (d-SxM) x ~Sp+('x) -. d

T-T 6 S1..n I S

Show that the last term may be reduced to

R X(a grad )
r)

S6

whence obtain the result of the previous exercise.
r_- I d eeoe

Show that the first form of curl (partial) M x grad - dT deve oped

above may be replaced by

- grad (partial) . grad 1 dT +j M grad dS+ dS grad

T-T 6 S 6

6 6+

S 
+
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4-138. By writing

f 1 dP"' pril cu•riM P' -
72 (partial) N x grad 1d - V2 (partial) dT - d§ x r

T-T6 a -T6 S.E, S6

and demonstrating that

V2fdg xr = 0

Sl1..n E

and

V2jC aSculR-2 T(7 x

S S

+ div ( x + n (curl R) dS

arrive at

V2 (partial) F x grad 1J r
T-T6

- f(d~~~)url+(dxLT x curlH (dx-9 )div~

S6

and show that this expression is identical with that derived in the
previous exercise.

4-139. Since

curl (partial) dr - x grad 1 dT + dS x
T-T T-T S
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we may write

curl curl (partial) f dr - curl (partial) f x grad 1 dr + curl dS x

T- 6 - 6

whence, from a result of Ex.4-134. above,

curl curl (partial) f dr

S fdiv M grad 1dr+jM. Erad + M grad CS+curl dSXR

T-r 6  S S

Expand the final term, bearing in mind that in this case M alone is

variable, and by making use of an expansion for grad div partial pot J
in Table 2, p. 331, arrive at

curl curl partial pot M - grad div partial pot M + j -_ dS
S 6

4-140. Simplify the expressions in Ex.4-137. and 4-138. by demonstrating that

4 dS x 5) grad Mx - f(dS xj3 x curl R

55 S6

and

'I (4S ) gradxM -

S
6
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TABLE 3

The Scalar Potential Function grad - dT and its Derivatives

I P.grad 1 dT- (- dv ) dT + . dS (interior and exteriorr ri points of r)
T T S1 ..n"n

(2)

partial grad dT dr + -. dS (evaluated at centre of
r rfr moving 6 sphere within T)

T-T6  T-T6 S , S6

(3)

cavity P . grad 1 dT - dr + • S (defined throughout fixed

f rr 6 sphere within T)
T-T6 a-T6 S E..n S6

(4)

grad fP grad d f (-div P) dr + P.dS r (interior and exterior
f r r points of T)

T T S 1.n

-J (curl F) x dT 4,F ) (d x r

1. .n (exterior points

_curl , F x grad -dT ofT)

f r

-f (curl F) x d¶f(dSXF) X- +4-r P

T S 1. .n rS.n(interior

points
of T)

curl / F x grad r dr + 4wF

T&
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TABLE 3(CONTD.)

(5)

grad (cavity) grad 1 dT - J-div F) 3 d¶+ F. CS

T-T T-T6 S .. nE, S6

T-T6 Sl..nE, S6

- curl P x grad! dT

T-T 6

(6)

Lim Fd- d 1 4-
6.0 grad (cavity) P . grad 1 - grad F grad dT WP

T-T 6

for evaluation at the centre of the 6 sphere.

grad (partial) FP grad 1 dr

T-xS

T- ,r S1 . .n ' S 6

" (curl F) x dT (armxF) x + i grad C S

T--r S1 n S 6

" - curl (partial) f x grad 1d - PL1 dS . + F x (diS x

T6 S6

(8)

V2 f . grad d d * 0 at exterior points of T

T
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TABLE 3(CONTD.)

(9)
V2  P grad dT = 4w div P at interior points of T

Tr

(10)

V2 (cavity) J . grad d r 0

T--T

V2 (partial) F grad dr - - div P dS + (curl P) (dS xf r r 03

T-T6 S a

TABLE 4

The Vector Potential Function j x grad ; dr and its Derivatives

x grad I dT -/ curlR dT d-dx R• (interior and exterior points

T T S1..nE

(2)

partialfx / rad d /curl d f dM X (evaluated at centre of
j r r moving 6 sphere within T)

T*r T-r S.E, S5

(3)

cavity x grad dT curl Rf dr ds X (defined throughout fixed
r d 6 sphere within T)

T-T T-T S1 .. nE , S6

(4)

div f x grad 1d - 0 (interior and exterior points of t)

(5)

div (cavity) J x grad dT - 0
r-r

T-T
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TABLE 4(CONTD.)

(6)

dlv (partial) x gradI dr ,i.(d-x§

T-T6 S 6

(7) (interio
c Iuxrl gradd - - (curlh x I-dT+ (dsxR)L (interior

r P Jr and exterior

T T SlE points of T)

(dvR -dT Rd- -
SS 1 ..n.E

(exteriorpoints of T)

- -grad R . grad dT
Tr

(div N) dT - .dS + 41

T S •..n£

(interior
points of 0r

- grad R . grad -dT + 4po 
f

(Sd f r I; d_

curl (cavity) R x grad d -(curl R) x d3  + (d-SM) xr

6-T T-T S. E, S6

- (div R) d¶-'.d'

T- 6  S .Z, Sa

- grad RN grad 1 dr

IT--T r
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TABLE 4 (CONTD.)

(9)
Lim curl (cavity) x grad 1 dr - curl x grad dT - s:

T-T6 T

for evaluation at the centre of the 6 sphere.

(10)

curl (partial) j x grad 1 dr

T--T

(curl) x L dT + (d'x§ ) xL•3-L f x dS i)

T-T S z S

T-..6 S n $

- grad (partial)f . grad dr -T RdS. + Mx dSx ) x

T-r SS

(11)

"V2 x grad 1 dr - 0 at exterior points of T

jr

(12)

V2 f x grad 1 dT - -4w curl N at interior points of r
rr

(13)

V2 (cavity) x grad dr -

r-r
T-T

£ (14)

grad div x rad 0 (interior and exterior points of r)
I

T
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TABLE 4(CONTD.)

curl curl x grad - dT - ' at exterior points of T
fTr

(16)

curl curl )Tx gral dT - 4w curl R at interior points of T
fTr

(17)

V2 (partial) x grad 1 dT

T--T

=fdS. curl (d- is div Ri + (dS x ~r)x curl M

S8

(18) f- 1
grad div (partial) x x grad -dT dS x x curl

rr

T-T6 S6

(19)

curl curl (partial)] x grad -dT dS x )div M -dS.- curl

T-T6 S6

4.20 Introduction to the Macroscopic Potentials
36

4.20a The macroscopic scalar potential

Suppose that a system of point singlets and doublets occupies a region T
of space. Then provided that the distribution exhibits a sufficient
degree of statistical regularity, its potential may be approximated at
exterior points of T by the expression

dT + grad 1 dT (4.20-1)

T T

36. This subject is treated in more general form and in greater detail in
Sec. 5.18.
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where p and F are continuous point functions which are related to the
source strength/unit volume, and the source polarisation/unit volume

37relative to a local origin , in a neighbourhood of the point of
evaluation.

For the most general type of mixed distribution the second tern of
equation (4.20-1) may be shown to derive in part from the singlet
component, although the contribution from this will usually be small;
when doublets alone are present, only the second tern survives. This may
be demonstrated plausibly in the following way.

It is shown in Sec. 4.1 that the potential at 0 of a point doublet
located at P is given by

0( P P P grad (4.20-2)

where p is the vector moment of the doublet and r - OP.

A set of such doublets, when occupying the subregion AT whose distance
from 0 is large compared with its dimensions, gives rise to the potential

- { (rad ~ a.(rad AT
AT

where P' is a point of the subregion.

The potential of a set of juxtaposed subregions comprising the region T

is consequently given approximately at exterior points by

ED.~ grad 1)

If the dimensions of the individual subregions, when restricted to values
small compared with their distance from 0, are nevertheless sufficiently
large in relation to the 'grain size' of the structure for conditions ofEP

statistical regularity to prevail within them, with L varying gradually

from one subregion to the next, it may be assumed that the above
umeation can be replaced by the integral

j P. grad 1 dt

37. See p. 224.
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where F is smoothly interpolated between the individual values of -•

"assigned, say, to the centre of each subregion.

Equation (4.20-1) serves to define the 'macroscopic' potential of the
mixed source system. This point function is well-behaved, not only at
exterior points of T, where it approximates the 'true' or 'microscopic'

potential, _ai, but at interior and boundary points as well, where the

microscopic potential may be undefined. The more finely-grained the
distribution, the more closely does the macroscopic potential approximate
the microscopic right up to the source boundary.

Macroscopic potentials may also be defined for point singlet and doublet
line and surface sources. In this connection it will be observed that
equations (4.2-10) and (4.3-3) may be looked upon as the macroscopic
potentials of normally-orientated line and surface doublets in a
limiting, finely-grained configuration, or as the potentials of paired,
continuous line and surface sources. (Where continuous sources are
concerned, the terms 'macroscopic' and 'microscopic' are superfluous.)

For present purposes we will prescind from singlet distributions

altogether, and suppose that potentials of the form f 2 dr andf S dS
"S

invariably derive from continuous volume and surface sources.

Correspondingly, we will identify P o grad dr (or its surface

equivalent) as the macroscopic potential of a statistically-regular

volume (or surface) distribution of point doublets.

4.20b The macroscopic vector potential

It has been shown in Sec. 4.12a that the vector potential of a closed,

uniform, tangential line source of magnitude I and vector area S, which

shrinks about a point P while maintaining IS constant, is given at an
exterior point 0 by

a ( x red 1) (4.20-3)

where

-o7S
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The limiting configuration of this source is known as a whirl or vector

doublet, and ; is said to be the moment of the whirl, by analogy with p
38

in equation (4.20-2)

It is clear that by proceeding from (4.20-3) as from (4.20-2), we can
demonstrate with equal plausibility that the vector potential at exterior
points of a statistically-regular volume distribution of whirls is
approximated by

r 1 d
Mx grad-Jr

T

where R is a continuous point function which is smoothly interpolated

between individual values of L assigned, say, to the centre of each

subregion.

This expression serves to define the macroscopic potential of such a

distribution. Unlike the microscopic potential, I •-, which is

undefined at the source points, the macroscopic potential is defined and
continuous everywhere.

For a mixed volume distribution of vector singlets and doublets the
macroscopic potential takes the form

f + f grad 1 dT (4.20-4)

T T

where 3 is evaluated statistically in terms of the singlet distribution.
This is entirely analogous to equation (4.20-1). We have not yet
described the nature of the vector singlet, nor need it concern us here.
For .present purposes it will be supposed that integrals of the form

J J dr derive from continuous density distributions and that the

function /* x grad - dT has its sole origin in a statistically-regularJ r
T

volume distribution of whirls.

38. This involves an inconsistency since it might reasonably be expected

that the moment of the whirl about some exterior point 0' would be defined

as f V x I d?'. However, the result of Ex.1-61., p. 78 identifies this

integral with 2; rather than ;. As in the case of the scalar doublet, the
moment is independent of the position of 0'.
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A statistically-regular open surface distribution of whirls gives rise to

the macroscopic potential M x grad dS, where M is now related to
".S

the vector moment/unit area in a neighbourhood of the point of
evaluation.

When the whirls are aligned normally, ie when the whirl moments are
everywhere normal to the surface, the potential is continuous through the

surface at interior points where R is continuous.

This may be seen by writing

f x grad dS - curlf dS

S S

and making use of the relationship (4.14-8).

If M - n M and M is constant over the surface

f x grad 1 dS - MH dS x grad . M d-r

r r rS S r

where the contour integration is carried out right-handedly in relation
to the positive sense of the normal at the surface. It follows that the
macroscopic potential of this particular surface distribution of whirls
is identical with the vector potential of a tangential line source of
constant magnitude M coincident with the periphery.

4.21 Inverse-Square Vector Fields and their Relationship to the Potential
Functions

4.21a Inverse-square fields deriving from scalar sources

The inverse-square vector point function U deriving from Newtonian point
sources is defined at any point 0 not coincident with a source by

n -n

Ua a- (4.21-1)

i-I i-I

where ri is a unit vector directed from 0 to the ith source element.

It is seen that each source element of positive magnitude is supposed to

give rise at 0 to a vector contribution directed radially away from the
element and diminishing as the square of the distance from it.
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For simple line, surface and volume sources of piecewise continuous
density we have

X~~ T-3ds U - a indS U; 3~d¶ (4.21-2)

r s

Reference to (4.6-3), (4.7-1), (4.7-7) and (4.8-1) reveals that in each
case

U- - grad * (4.21-3)

at exterior points of the source, where f is the associated scalar
potential.

It is clear that equation (4.21-3) will continue to hold for all
combinations of source elements and must therefore be valid for point,
line and surface doublets and for combinations of these.

The volume integral in equation (4.21-2) is convergent at interior points
of a piecewise continuous source (including those points at which p is
discontinuous), and (4.21-3) continues to apply there. An outline of the
proof appears in Ex.4-44., p. 282. The relationship has been derived for
a continuous source in Sec. 4.8.

It follows from equation (4.21-1) that in the case of a volume

distribution of point doublets, U must be interpreted as the negative
gradient of the microscopic potential. At exterior points of the
distribution, where the microscopic potential is adequately represented
by the macroscopic, we may consequently write

S- - grad P . grad 1 dr (4.21-4)

T

- curlf Pxgrad dr from (4.18-8) (4.21-5)

T

This fails at interior points.

Let a cavity be created within the distribution. Then provided that the
dimensions of the cavity are sufficiently large, and the point of
evaluation sufficiently removed from the walls, the inverse-square field
at 0 deriving from sources outside the cavity will be given by

U (cavity) r - grad (cavity) P . grad 1 dr (4.21-6)

0r r

(The cavity is denoted by T' rather than T6 since the analysis will hold
for any regular region.)

. °
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By combining equations (4.18-4) and (4.18-10) we find that

U (cavity) - -grad gad dT + (-dtv F) L dr

T T' S'

(4.21-7)

where S' is the bounding surface of the cavity and the volume integrals

relate to the undisturbed distribution.

Now suppose that the cavity exhibits point symmetry about 0. Then so

long as div P is sensibly constant over the excised region, the volume
integral over t' vanishes and

(cviy/--fP -S
° (cavity) grad P . grad 1 dT - F.dS 7 (4.21-8)

T s'

We will consider explicitly three types of cavity:

(1) a cylinder of large length/diameter ratio whose axis is aligned

with the direction of P at 0 (needle-shaped)

(2) a cylinder of small length/diameter ratio of the above alignment
(disc-shaped)

(3) a sphere.

The overall dimensions of these cavities are supposed to be the minimum
consistent with the requirement that the microscopic potential of the
distribution in a neighbourhood of 0 is closely matched by the

39macroscopic. Then if P is constant over the excised region , an
evaluation of the surface integral shows that

Uo (needle-shaped cavity) = - grad f P . grad 1 dT (4.21-9)0 r"T

U (disc-shaped cavity) - - grad P . grad 1 dT + 4wPo (4.21-10)

T

U (spherical cavity) - - grad P . grad 1 dT + 4 rP° (4.21-11)

T

39. This requirement is more severe than necessary. See Ex.4-145. and
4-146., p. 391.
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By combining equations (4.21-9) to (4.21-11) with (4.18-9) we obtain the
alternative forum

U (needle-shaped cavity) = curl T x grad 1d - 4o- (4.21-12)

T

(disc-shaped cavity) curl Y x grad 1 dr (4.21-13)

U (spherical cavity) - curl P x grad 1dT (4.21-14)

It should be noted that the absolute dimensions of the cavity are not
contained in any expression.

The surface integral which appears in equation (4.21-8), and is evaluated
in subsequent equations, stems from the restriction of the integration
region to T-T'. The presence of the cavity, as such, has no bearing upon

the situation 40. Thus, in the determination of the value of U for a0
complete source, the contribution from doublets enclosed by S' is added
to the external contribution as expressed above. Since the value of U

0

must be independent of the mode of division, as determined by the shape
and size of S' within the restriction already imposed, it is apparent
that the interior contribution is primarily dependent upon the shape of
T'. In a number of cases of practical importance the mathematical model
postulates a configuration of doublets of such symmetry that when the
point 0 coincides with any one doublet the inverse-square field at 0
deriving from all other doublets in T' is zero, provided that S' is

spherical 41. This result lends a special importance to (4.21-11) and
(4.21-14), since it allows us to express an essentially microscopic
effect in terms of macroscopic functions. The subject is taken up again
in Sec. 5.20 where it is developed against a background of retarded
potentials.

Equation (4.21-9) plays a significant part in an alternative approach to
the definition of scalar potential. Suppose, in the first instance, that
we are concerned with continuous volume sources of bounded density and

finite extent. Then U - - grad # everywhere, so that if we define a
scalar point function *' by

40. It is, of course, assumed in the present context that the removal of

part of the distribution has no effect on the remainder.

41. Or cubical. See Ex.4-148., p. 392.
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0

IF- - f.dr (4.21-15)

we have

0

- f grad *.dr = 0 -PP

If 0p is postulated to be zero when P is some point of an infinite

spherical surface centred upon a local origin, then *' will be zero at

all points of the surface, since jUj decreases as the square of the
distance from individual source elements and the circumference of the
sphere increases as the first power of the radius. Because # also is
zero everywhere on the sphere we may write

0 .-f = 0 (4.21-16)

for all positions of 0.

A difficulty arises when closed, continuous surface sources are
introduced. To reach interior points of any enclosure the contour of

integration must pass through the bounding surface. U is undefined upon
this surface and it is not possible to determine whether or not a
discontinuity of #' should be assigned to the point of intersection.
Thus, the presence of a uniform double layer with its attendant
discontinuity of potential cannot be detected by observation of the
inverse-square field or its derivatives on either side of the surface.

Equation (4.21-16) remains valid for discrete distributions provided that
the integration contour avoids the sources and # and #' are understood to
refer to microscopic potentials. However, in order to derive a
macroscopic potential at interior points of a doublet distribution some

non-microscopic form of U must be employed and it is in this context that
equation (4.21-9) becomes significant, for it will be seen that by

defining a 'macroscopic U1, identical with the inverse-square field at
the centre of a needle-shaped cavity, the associated potential will

approximate F . grad 1 dT. This approach to the macroscopic potential

via a cavity-defined gradient function is of historical interest only and
42

will not be pursued

42. Likewise the substitution of the inverse-square field at the centre
of a disc-shaped cavity for the analytical expression on the right-hand
side of equation (4.21-10).
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4.21b Inverse-square fields deriving from vector sources

The inverse-square vector point function W deriving from piecewise
continous simple line or surface sources is defined at an exterior point
0 by

V -f I 1  s ; -ff Y d.dS (4.21-17)
r s

where r is directed from 0 to the source element.

Each source element is seen to give rise at 0 to a vector contribution
which diminishes as the square of the distance from the element, and is

directed normally to the plane containing r and Y or r and K. Reference
to equations (4.14-2) and (4.14-6) reveals that in each case

W - curl 1 (4.21-18)

where A is the associated vector potential.

It is clear that this relationship will continue to hold for all
combinations of source elements, including line and surface doublets.

The inverse-square field deriving from a piecewise continuous volume

source of density J is given by

W- J Jx-dT (4.21-19)
0r 3

The integral is everywhere convergent and the relationship W = curl A may

be shown to hold at all points, including points of discontinuity of J.
This may be proved by an obvious extension of the analysis of Ex.4-44.,

p. 282. It has already been demonstrated for points at which 'S is
continuous (Sec. 4.15).

It follows from equation (4.21-18) that in the case of a volume

distribution of whirls, W is identical with the curl of the microscopic
potential. At exterior points of the distribution, where the macroscopic
and microscopic potentials are sensibly equal, we have

U curl x grad I dT (4.21-20)

- - grad f . grad 1 dT from (4.19-10) (4.21-21)

This fails at interior points.
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Proceeding as in Sec. 4.21a. let a cavity be created within the
distribution. Then, with the earlier nomenclature,

o (cavity) - curl (cavity) M x grad dr (4.21-22)0 r
T--T

whence, on combining equations (4.19-6) and (4.19-12), we find that

Wo (cavity) - curl MX grad! dT + (curl R) X-1 dT + (d"M) x

T Ttso

(4.21-23)

The volume integral over T' vanishes when the cavity exhibits point

symmetry about 0, provided that curl R is sensibly constant across it, in
which case equation (4.21-23) reduces to

W (cavity) - curl Mx grad ! dT + (dSxM) x (4.21-24)

T St

On evaluating the surface integral for needle and disc-shaped cavities

whose axes are aligned with the local direction of N (assumed constant
over T'), and for a sphere, we get

W (needle-shaped cavity) = curl H x grad t - 4?r (4.21-25)

T

W (disc-shaped cavity) - curl R x grad 1 dT (4.21-26)

W (spherical cavity) - curl R x grad 1 dt - Mo (4.21-27)

T

Equation (4.21-27) represents an approximation of (4.19-6), viz

Li url grad •dt - wM°
6a0 curl (cavity) R x grad r dT - curl R x

f fr
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By combining equations (4.21-25) to (4.21-27) with (4.19-11) we obtain

- -I

o (needle-shaped cavity) - - grad j M . grad 1 dT (4.21-28)

T

W (disc-shaped cavity) = - grad .grad dT + (

0r 0
T

W (spherical cavity) - - grad M . grad Id + AM (4.21-30)
03

T

4.21c The representation of a vector point function as the combined
inverse-square fields of scalar and vector sources

It follows from equation (4.17-4) that a vector point function F, which
is well-behaved within the region T bounded by the surfaces S l..nE, may

be represented within T as the sum of inverse-square fields deriving from

volume sources of densities 1div F and1 -curl F throughout T, and

surface sources on S.Z of densities -Fand -(nxF)
outward normal. l. 4w aw

This form of expression is not unique. There are, in fact, an infinite
number of possible combinations of sources covering the surfaces S I..n

and the space within and without T which produce the required values of F
at interior points, as seen from the considerations of Sec. 4.17.

However, when F is defined and well-behaved at all points of space
outside given surfaces and vanishes at infinity, the associated source

system is unique and corresponds to volume sources of densities L div

and L curl F taken over all space, together with sources upon the4w I At 1 A

surfaces of discontinuity having the densities -A(n.F) and A(nxF) in

the notation of Sec. 4.5.

4.21d Alternative definitions of scalar and vector potential

The terms 'scalar potential' and 'vector potential' are frequently
defined without reference to scalar and vector sources.

Thus 0 is said to be the scalar potential of the point function F in the
43region v if F - grad * (or - grad *) in T43 This relationship requires

that curl ? be zero, and that F be irrot%tional in a multiply connected
region if * is to be single-valued (see Ex.1-38., p. 47). In any case, $
is determinate only to within an additive constant.

43.
is. of course, a scalar potential, as previouly defined, whether . is

the inverse-square field of scalar sources or not, because any scalar point
function can be expressed as the sum of potential functions.
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Similarly, c is said to be the vector potential of F in T if F - curl c

in T. F must be solenoidal for this to be possible (p. 62). While c,
like any other vector field, must be expressible as a vector potential in
the general form given by equation (3.3-4), it is specifically related to
volume sources in T and tangential surface sources upon its boundaries by

equation (4.17-6). c is determinate only to within an additive gradient
function since curl grad is identically zero.

It will be observed that with the above definitions of scalar and vector
potential it is no longer possible to predict the values of the

discontinuities obtaining at the interfaces of juxtaposed regions 44

EXERCISES

4-141. A closed surface S is immersed in a statistically-regular volume
distribution of (a) point doublets and (b) whirls, in such a way that
it does not intersect any source element. If the subscripts 1 and 2
refer respectively to microscopic and macroscopic functions, show that

(a.1) iU.dS - J (- grad #1).dS - 0

S S

(a.2) - div grad *1 - div U - 0 outside each doublet

(a.3) - div grad *2 - -4w div P throughout the distribution

(b.M) i•Ad-S (curl A1 ).dS - 0

S S

(b.2) div curl A1 - 0 outside each whirl

(b.3) div curl A2 - 0 throughout the distribution

(b.4) curl curl 11 - ' outside each whirl

(b.5) curl curl A2 - 4w curl R throughout the distribution

4-142. A volume distribution of point doublets occupies an aperiphractic
region T bounded by the surface S. Two points P and Q, exterior to T,
are at such distance from S that the macroscopic potential of the
distribution is sensibly equal to the microscopic potential at each
point. If a regular curve is drawn between P and Q, passing into and
out of the distribution but not cutting any doublet, show that the
tangential line integral of the inverse-square field along PQ is equal
to the tangential line integral of the pradient of the macroscopic
potential. (Note that the normal derivative of the macroscopic
potential is discontinuous through S.)

44. The author is convinced that these definitions (which appear in
practically every text book) are the primary cause of the confusion which
continues to permeate the subject of electrical fundamentals.
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4-143. A volume distribution of whirls occupies an aperiphractic region r
bounded by the surface S. r is a closed curve exterior to r and at
such distance from S that the macroscopic and microscopic vector
potentials are sensibly equal at each point of it. A regular surface
S' spans r and cuts T but does not pass through any whirl. Show that
the flux of the inverse-square field through S' is equal to the flux of
the curl of the macroscopic potential. (Note that the tangential
component of the curl of the macroscopic potential is discontinuous
through S.)

4-144. Show that

curl dr - x dr
r r

at points of discontinuity of J.

4-145. Evaluate the surface integrals in equations (4.21-8) and (4.21-24) for
the case of a cylindrical enclosure of length I and diameter d, given
that

A
P " (Po+ax+oy+yz) z

and

M - (Mo+ax+oy+yz) z

where z is axial, the origin of coordinates is the centre of the
cylinder, and a, 0, y are constants.

[Note that under these conditions div P and curl R are constant
throughout the enclosure.]

Ans:

(I~a2)i(1+U2) i

where a - dl1

4-146. Show that for the values of P and R given in Ex.4-145, the surface

integrals, when taken over a spherical anclosure, continue to be given
by t J8ad- 7

4-147. The potential of a plane rectangular surface source of constant density
a. at a point 0 of the normal to the surface through one corner A, is
given by

( ib + d3  bin - - -b 1
bd 2  + d+ d

c 1 -dn
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where B and C are corners adjacent to A and distant b and c from it, D
is the diagonally opposite corner, and

z = AO , d 1  - 0B , d2 - OC , d 3 - OD

Hake use of this to evaluate the surface integral of equation (4.21-8)
for a rectangular enclosure of dimensions 2b x 2c x 2d where the side

of length 2d is parallel to P which is assumed to be constant over the
enclosure. Hence show that the result for a cubical enclosure is

4-•
identical with that for a sphere, viz ".

Ans: 8P tan-
1  bc

d(b
2 +c

2 +d
2 )1

4-148. A cube is so orientated in space that one set of edges is vertical.

Equal scalar point doublets, directed vertically, are located

(a) at the centre of each face

(b) at each vertex

(c) at the centre of each edge.

Use the result of Ex.4-23., p. 256 to show that the inverse-square
field deriving from each set of doublets is zero at the centre of the
cube. Invoke an appropriate transformation to demonstrate, without
further analysis, that the inverse-square fields deriving from sets of
vector point doublets (whirls) of identical orientation and disposition
are likewise zero at the centre.

4-149. Develop a field-slipping analysis to show that an inverse nth power

vector field F, deriving from a well-behaved volume source of density
p, may be expressed both at interior and exterior points of the source
as

- - p-ddT -grad 11
r n

¶

T

where

U P ln dT (n<)
f r

T

Note, however, that I does not converge at infinity unless n 0 0, and U
does not converge unless n > 1.
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Show likewise that at exterior points

div F = (2-n) 0 dr

T

and at interior points

div F (2-n) 2 - dr (n < 2)
r

divF = 4rp (n - 2)

Observe that only for n - 2 is div F directly related to the ambient

source density. Note also that curl F - 0 for all values of n which

allow F to be expressed as - grad U.

4-150. An inverse nth power radial field, deriving from a point source at P,
is given by

A
1 a- -n^ R~n

where a is a constant and R denotes distance from P.

A region T is bounded by inner and outer spherical surfaces S1 and S2 ,
of radii ai and a2, centred on P.

Express F at any interior point of T as the sum of inverse-square
vector fields deriving from volume sources of density (2-n) a R-(n+1)

4w S- n

throughout r, and surface sources on S1 and S2 of densities A- aI and
41r___-0 -n

Confirm this result by an application of equation (4.9-6), noting that
source elements of greater distance from P than the point of
observation yield no net contribution to the inverse-square component.

4-151. If F is irrotational in the simply connected region T bounded by the
surfaces S I..nZ, show that it may be expressed within T, in the

notation of Sec. 4.17, as

A A

47F4 = - grad divF dTr + grad ( dS +
0 ] r r

T S1

A A

+ rd (n F+n1 .F 1 )--... +grad dS
7 r
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where F1----F are defined as follows:

Let the scalar function U be defined at any point Q of T by

UQ

where P is a fixed point of T.

Let U1 --- Un be the solutions of the interior Dirichlet problems in

T1----Tn when U1---Un are equated to U over S ---Sn. Similarly, let UE

be the solution of the exterior Dirichlet problem in T when U is

equated to U over E. Then 1 " grad U1 in T1, etc and F. grad U in

T.•

bE



CHAPTER 5

RETARDED POTENTIAL THEORY

5.1 Retarded Scalar and Vector Fields

Let V be any continuous function of space and time within the region R
bounded by the surfaces S I..nE, over some particular time interval. It

is clear that each of the relationships derived previously for
time-invariant fields will apply to the V field under consideration at
any instant of time within the specified interval.

Now consider a point function [V] which is derived from V by associating
with each point of R at any time t the value of V which obtained there at

r'
the time t - c , where r' denotes distance from a fixed point Q within orcI

without R, and c is a constant1.

When c is positive, [V] is seen to be a 'retarded' field (except at the
point Q when this lies within R) and when c is negative it becomes an
'advanced' field. To simplify nomenclature we will refer to [V] as a
retarded field but will bear in mind that c may be negative. We may
generate from the parent V field as many IV] fields as we please by
choice of the position of Q and the value of c. Each [V] field will be
well-behaved throughout R for each point of time within some particular
interval, provided that V is well-behaved in space and time over an
appropriate interval. Under these conditions many o' the relationships
derived for static fields in earlier sections remain valid for retarded
fields.

Thus, inter alia, we have

f grad IV] dr - f[V] dS

T S 1..n 1

grad IV] - grad [V] + IV] grad
r r r

-0 " 1 3 - [VII - dS - I V2 [V] dr (5.1-1)
0 r J Mn- an ~rj jr

S 1..nE

1. It will be seen that c has the dimensions of velocity.

395
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In equation (5.1-1) the origin of r may or may not coincide with the

origin of retardation (Q). If it does, then

4w [V]° - 4rV°

In like manner we may derive a retarded vector field [F] from any parent

field F which is appropriately space and time-dependent in R.

Then

J div [F] dr = [F] .dS

T S E
1..n

curl curl [F] - grad div [f] -V2[f]

F] 11 -div IL] 1 div [F] + grad - . [F]
r r r

__[F 0 rriaT TIL() S V2[f] d¶ (5.1-2)

S I..S1. .n•

4ir[F] }
T 

SI. .nz

(5.1-3)

- / (curl[f])x1 d¶ + (dsx[T])J~y

T S I..n r

where the origin of r may or may not coincide with Q.

It will be obsrved that in the above equations the origin of retardation
(and of r) is supposed to remain fixed in space while the various field

operations are carried out. When this is not the case - as in the

differentiation of potential functions, where the origin of retardation
is identified with the origin of r - it is not possible to transform non-

retarded into retarded relationships by the simple substitution of

retarded for unretarded quantities. This matter is treated in detail in

subsequent sections.
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5.2 Expansion of Grad[V], Div[F] and Curl[F]

Let the coordinates of adjacent points P1 and P be (xl,yl,zl) and
(x 1+Ax,yl,zl) respectively, and let their distances from the origin of
retardation, Q, be rl and rl + Art'. Then at the time t

(V] - [V]P, - V (xi+Ax,yizl.t - (ri+Ar')) V (xJ'yJ'ztt- r")

. V (XJ+Ax.y1,z1,, - (rV+Ar')) V ( yzt - (r +r'))

+ V itlvlz9Lt - c Vxqy:L1z1t -

whence, by the mean-value theorem,

rvrv D V 6r'ý
[VIP - [v], Ax +Tt

yl ly

(r!+Ar') (ri+Ar")
t -t -

c c

where

X1 < X, < X1 + Ax

0 < Ar" < Ar'

O On dividing by Ax and taking limits we get

( \v 1 (r: 5-1(5-

whence, in general,

grad IV] - [grad V] - - (5.2-2)

where P' is the radius vector directed from the origin of retardation,

and the brackets around grad V and LV imply that these terms are to be

evaluated at the time t - .

c
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It also follows from equation (5.2-1) that for any well-behaved vector

point function F

div[F] - [dlv F] - 1 r- . (5.2-3)

curl[F] - [curl F] - - (5.2-4)

It should be noted that

acv~ a1IaF] _ ail
at- - L and R-- - (5.2-5)

so that

[-- ]- [ (5.2-6)

[grad V1 [ rad - rad.a](5.2-7)

a' [ l curl url a (5.2-8)

It then follows that

Sdive[F] - div (2

Sgrad av (5.2-10)

at = r 1V - r

a curl[F] - curl (5.2-11)

but

j div] div LRtJ
etc.
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Nov consider the differentiation of a retarded function [V] with respect
to the coordinates of the origin of retardation - say (x',YoZ'). In

expanding -- [V] we note that [V] is a function of x' in virtue of
0

0retardation alone, so that at the point (x,y,z) we have

•[V] •r' •V-] (X-X') •
a I r [i0 (5.2-12)

-! -ax, Laj cr' J
0 0 L!

The local space-variation component which was evident in equation (5.2-1)
is now missing.

On the other hand

a (au _[v] (a a I Wr' W [2V]
ax \ax ,/ c ax' at \~ax C- cX- ax Lat-ax. --- + - T X- La-tyj

0 0 0 -~0

since L is a function of x' both through space and time-dependence.ax 0

It is necessary to expand a[V] before differentiating with respect to X'.

We then obtain

iii ax ax' ax caTx [ TtJ

(5.2-13)

I ar' _ 2v] ý + a (a',• av I War' ar' 5 2 v7
caTx' -axj at x, tax

0 0l TX0ixL

5.3 Dynamical Extension of Green's Formula

The theorem to be derived extends Green's formula (3.3-1) and (3.3-3) to
the case in which V is both space and time-dependent.

Let V be any point function, well-behaved in space and time within the
region R bounded by the surfaces S I.Z Z over the time interval required

by the analysis, and let the origin of retardation coincide with an
interior point 0. Then r' - r where r is distance measured from 0. It
follows from equations (5.2-2) and (5.2-3) that at points within R

div grad[V] - div~grad V] - div 5 [-7
"Edid grad VI [grad VI - div t F V

cr at cr at

[V2V t ad - aV1 div - .grad aV

at a cr cr aI1



400 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.3

or

V2 [v] - [v 2V]- 2-.grad __ 2 _ (5.3-1)J La t cr Lt

On surrounding 0 with a 6 sphere and proceeding as in Sec. 3.3 with [V]
replacing V, we obtain

V3 "in (I - 12 IV] dS f - [ V -2V •-i dr

SI .. Z, Sf T-Td

(5.3-2)

+ 2f~ grad [a V + [jdT

T--T

But

di R r j F2vf 0 +~ 5 D[i r tJ .grad [,, [

hence the second volume integral in equation (5.3-2) may be replaced by
the surface integral

2 -V .dS - 2 Lr F-a
tj rcr - n Lt dS

S .. nZ, S6 SI..n E, S6

whence

[V - - - cran dS 2V -a 2 V7-dT

S..n, S6 T-T

or

I -V ) - L [ cr 5T dS 2V I r v --- dv

S 1 Z, S6 T-T 6
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m2

On taking limits as the 6 sphere shrinks about 02 and noting that

[V] -V we get
3

!12u

n1V L- [-2Fi' [7ri . ~ ~ ~ l S f i 2 V 1 3 d .r
r nanj _ [ n +r ] dS- t c al

S1..nZT

(5.3-3)

When 0 is exterior to R no limiting process is involved and the left hand
side of equation (5.3-3) is zero.

It will be seen that equation (5.3-3) reduces to (3.3-3) when c = ± or
when V is invariant with respect to time over the maximum retardation
interval involved.

If U1 is a point function which is well-behaved within T1, ie the region
bounded by S1 , then for an origin of r within T, we have

S1  T1

where the positive sense of n' is directed into r.

By combining this with similar equations for the regions T2 .... rn and
with equation (5.3-3) we get

47rVo = • - ED - rV-U] L ( +• L u L3- dSf 1iavf ;7- 1i 1 ar Fýva iF
o ~ L J_~~j an \~, rnLy aj

S1I..n
[,2V, 1 D2 V]•- dT - V2 • -•-2" dT (5.3-4)

T T 1..n

+ (v ] L [V 1 + L' L n F dS

2. It is clear that the same limit obtains when S6 is replaced by any
regular closed surface.

3. Equation (5.3-3), with the surface integral equated to zero, was proved
by Lorenz in 1861; with the volume integral equated to zero by Kirchhoff
in 1882, and in general by Beltrami in 1895.
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"Since U1, U2 ... are arbitrary functions it is clear that V 0 ay be0

expressed in terms of surface and volume integrals over S .. n and T,

TI..n in an infinite number of ways for any given value of c. When V is

defined throughout all space and is well-behaved everywhere except upon
the surfaces Sl..n then, provided that the surface integral over r

vanishes as Z recedes to infinity, V is uniquely represented at all
points not coincident with S .. n by

4wV° . f- ! a + A[vI L - L- L- . V1 dS - V2 -1 t- dr
SI..n

(5.3-5)

where the A notation is that used previously (p. 246).

It is a sufficient condition for the disapjp earance of the surface

integral at infinity that R [ , [V] and vanish as Ry- for non-

zero values of c, where R represents distance rom a local origin. This

is not a necessary condition. Thus, if V assume th symptot orm

Sthe surface integral vanishes although R and R do

not vanish individually.

It should be noted that equation (5.3-5) continues to hold when different
values of c are assigned to different regions, provided, of course, that
the volume integral and the components of the surface integral are
interpreted accordingly.

The results are applicable to vector fields having the required degree of
continuity since the scalar field may be identified with each of the
Cartesian components of the vector field in turn. Multiplication by the

unit vectors and subsequent addition leads to formulae in which
replaces V. In particular,

4ý[! afF [ JL > 'a FiL1F I 5 2f 1,422~ld

" "r in an cr an LatJdS r cI atj

s l..n Z T

(5.3-6)

for an interior or exterior origin of r.

The operator (V2 -2 t is kno. as the d'Alembertian, and is

variously written as a , 12 and dal (and sometimes as -o2).
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EXERCISES

5-1. Equation (5.1-3) has been derived from one form of the unretarded

grad-curl theorem (4.17-4) by substitution of [F] for F. By expanding
in accordance with equation (5.2-3) and (5.2-4), and taking the origin
of retardation to coincide with the origin of r, derive one form of the
retarded grad-curl theorem, viz

0 SY .T "n £ i0 r

-f [curl F]x• dr + j (dx[Fl])x• +f [ d,

T S 1..n E

5-2. If F is a vector point function having continuous first derivatives in
space and time and if (xo,Yo,zo) are the coordinates of the origin of

00

retardation, prove, by expansion after the manner of equation (5.2-13),
that

j div[F] -div r a•it iTX- c aa i x

53 .. ~ ... L..~........ e *'r for U in (3.1-2), with y
5-3. By replacing V with [V] and substituting r

a real constant and the origin of retardation identified with the origin
of r, derive the relat!onship

f VI L (I er) - 1 e yr atV-n dS I ! \V2r e/, - 1 ey' V2 [V] :) dT
an ýr r an-j ý

Sl..n, S T-T8

Make use of equation (5.3-1) and the expansion and subsequent volume

integration of div I to arrive at

yr v 13 yr ar a1
f V] T' er sr Lani cr da

S1..n 1  
Sa

- - a• • 2 -
F-T
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and so obtain

wV eyr (V - 1yr) + er 3r d3VS'yr r
4w} L~ L17i - n rV cr r )ja**~it dS

S IS1..n£

- y yr -2V-2V + - - d,

T

according as 0 lies within or without t.

5-4. Let the scalar point function V take the formu-L fl(r',t) + f2(x~yzt)

in a neighbourhood of the point P, where r' is distance measured from P
and fj and f 2 are well-behaved functions of space and time. Show that
to take account of this singularity within the integration space, the
final equation of the previous exercise must be modified by the addition

f (w~to the right-hand side of the term p fl (,t -t
rp c

5-5. Substitute [V] and [U] for V and U in equation (3.1-1) and expand in
accordance with equations (5.2-2) and (5.3-I). Then apply the

divergence theorem to the expansion of die[Vf r and proceed to

obtain

n - U a dS - V V2U - U V2VI V grad U U grad V dT

S ..nE

and

V dS V v2V]+Jlgrad Vg12- .j rad LvBt d

5-6. Use the results of Sec. 2.12a to show that the curvilinear surface
counterparts of equations (5.2-2), (5.2-3) and (5.2-4) are

A

grade(V] - [grads VJ - , [L
cr z~ 3T

divs(FI - [divas a] - c n•r]' 3

rL ~ ~ n Lt
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curls] _ [curls ' + r'

cr ct can t

5.4 Uniqueness Theorems for Tiue-Dependent Fields4

5.4a Uniqueness of the scalar field

Let the scalar point function V' be well-behaved in space and time in theclosed region R bounded by the surfaces S1 n. Then

div (-rad V) V2Vt + grad a-. gradyV

AV_1 ) V 2
V,-pV,-q AVK r L,

at Lat - tF~

+ L \ -)at + ligrad V uI2 j + q(• 2)

where p, q and r are functions of position (or constants).

Hence

dS- f pf V2 V- - ~- q r d-rat at at
S 1.

+ f tpV'2+ir (v-•)2 +1lgrad V'12 I dt + aq (i) 2 d,
TT

Let V1 and V2 be well-behaved functions of space and time which satisfy
the following conditions:

(1) V2V - pv - qt r i is a specified function of position in R
for t 9 0

(2) V and - are specified throughout R at t = 0

(3) tither !V or ! is specified upon S ZnE for t > 0.

1 4. We are concerned here primarily with fields which are not periodic intime, although the analysis is quite general. Alternative boundaryconditions apply to periodic fields and these are most easily determined by.k a complex exponential treatment (Ch.6).
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On writing V1 - V2 - V' we then obtain

0- pV'2+ir +JIgrad V11 23 dT +j dr for t a 0

T T

Then provided that q is nowhere negative, the second volume integral must
be zero or positive for t 1 0 and the first must consequently have a
constant or decreasing value. But the latter integral is zero at t = 0
and can never become negative so long as p and r are nowhere negative.
Hence in these circumstances both integrals remain zero for t > 0. It
then follows that if conditions (1) to (3) are satisfied and p, q, r are

nowhere negative, grad V' - 0 and grad V is unique at all points of R for
t > 0. Further, V' - 0 and V is unique if, in addition, either p or q or
r is positive throughout some subregion of R. When r is everywhere zero

•V
it is unnecessary to specify L throughout R at t - 0.at
5.4b Uniqueness of the vector field

The results of the scalar investigation above are directly applicable to

vector fields. Specification of V2F - -F- q _ _ r a throughout R for

t a 0, together with the specification of F and a-throughout R at t - 0
F F at

and of M or a on S.nE thereafter, determines the three Cartesian

components of F in R for t > 0 and consequently F itself (for appropriate
values of p, q, r).

A vector analogue of the scalar treatment may also be developed as
follows:

Let the vector point function F' be well-behaved in space and time in the
closed region R bounded by the surfaces S 1 .. nE. Then

div (a-' x curl = curl F'.curl L -F'.curl curl F'

- curl F'.curl -' •' F
at l- .grad div F' + atý . V2'

"at 2VpFq at - r at j- •-.grad div F'

+-L ýJpjFP Lr 1- 1+1 I curl -f'12- + q2 al 2

where p, q and r are functions of position (or constants).
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Hence

r(aj.curl P)d§ Jf . iV
2F'-pF''-q af' -r a27dr- d, 'l.grad div F' dT

SI..n r T

+ L p PIP2+• I -' 2 +i1curI T,] dT + f q ' 2 d

T T

Let F 1 and F 2  be well-behaved functions of space and time which satisfy
the following conditions:

- 3 a27
(1) V

2  
- pF - q - r is a specified function of position in R

for t k 0

(2) div F is a specified function of position in R for t k 0

(3) F and L are specified throughout R at t - 0

(4) either n x -or n x curl F is specified upon S.n for t 0

On writing F 1 - F 2 P •' we then obtain

0 It t LipIF jr1- 2+ +Icurl F'12] dT + f q 2- dT for t k 0

T T

Then provided that q is nowhere negative, the second volume integral must
be zero or positive for t 2 0 and the first must consequently have a
constant or decreasing value. But the latter integral is zero at t - 0
and can never become negative so long as p and r are nowhere negative.
Hence in these circumstances both integrals remain zero for t > 0. It
then follows that if conditions (1) to (4) are satisfied and p, q, r are

nowhere negative, curl F' - 0 and curl F is unique at all points of R for

t > 0. Further, F' - ' and F is unique if, in addition, R can be divided
into a set of subregions such that throughout each subregion one or more
of the factors p, q, r _is positive. When r is everywhere zero it is

unnecessary to specify ! throughout R at t - 0.

EXERCISES

5-7. Given that grad V' - 0 throughout R for t k 0 under the conditions
stated in Sec. 5.4a, show that V' is-likewise zero provided that p or q
or r is positive throughout some subregion of R.
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Given that curl F' - 0 throughout R for t k 0 under the conditions

stated in Sec. 5.4b, show that F' is likewise zero provided that R can
be divided into subregions throughout each of which one or more o- the

factors p, q, r is positive. Show further that F' - 0 throughout R for
t > 0 provided that

(a) conditions (1) to (3) are satisified

(b) p, q, r are nowhere negative

and either

(c) ! is specified over S.. for t a 0

or in the event of a single bounding surface S,

'I 
-

(d) U xL is specified over S for t a 0.

5-8. The thermal conductivity, density and specific heat of a conducting

region R bounded by geometrical or physical surfaces $i..n£ are well-

behaved positive functions of position. The region is free from sources
and sinks of heat. Use the result of Ex.3-28., p. 208 and an
application of the divergence theorem to the expansion of
div T(k grad T), where k represents conductivity, to show that the
temperature T at each point of R is uniquely determined as a function of
time t provided that the temperature at all points of R is a given
continuous function of position at t - 0 and the temperature at all
points of S .. nZ is a given function of position for t > 0. [Note that

the result of Sec. 5.4a is applicable to the present problem only when k
is constant throughout R.]

5.5 The Retarded Potentials of Scalar and Vector Sources

Retarded potential functions are derived from their unretarded
counterparts by time retardation of the source density functions, the
origin of retardation being identified with the point of evaluation.
Thus the particular source field involved in the evaluation of the
retarded potential # at a point 0 at a given instant will, in general,
depend upon the position of 0.

For a volume source we have

L -t idT where [p] (p) (5.5-1)
T C



Sec.5.5] RETARDED POTENTIAL THEORY 409

The integration region ¶ must include all points where the retarded
density is non-zero; it may consequently extend beyond the parent
unretarded field as seen at the moment of evaluation since the latter
may, in virtue of its time dependence, appear or disappear in certain

5
subregions 

.

*will be everywhere convergent and continuous, for bounded values of T,
provided that [p] is piecewise continuous and everywhere finite. This
will be so if p satisfies the same conditions and is everywhere piecewise
continuous in time over a finite time interval, with c assumed to be
non-zero. In these circumstances * will also be continuous in time at
all points, in spite of possible time-discontinuities of p. This
behaviour is best appreciated with the assistance of the following
constructions:

(a) Let a spherical surface move outwards from 0 at t - t with
0

velocity c through the unretarded source field reversed in time
from t - t . Then the value of p at any point of the spherical

surface is the value to be assigned to [p] in the evaluation of
the retarded potential at 0 at t = t .

o

[If the advanced density is required the field is not reversed in
time.]

(b) Let the region occupied by the source field be divided into a set
of volume elements fixed in position relative to 0. From each
element let a continuous stream of particles be emitted with
velocity c in the direction of 0. The magnitude of each particle
is equated to the unretarded source strength associated with the
volume element at the time of emission, divided by its distance
from 0. The sum of the magnitudes arriving at 0 at any instant
is equal to the value of the retarded potential at 0 at that
instant. [It does not seem to be possible to provide a
satisfactory construction of this type for the advanced
potential.]

It will be apparent from (b) that a time discontinuity of p which

produces a jump in the value of 2 dT cannot be felt all at once at 0.

T
The initial effect derives from a point, or a line, or a surface, but not

from an element of volume, consequently f p dT remains continuous in

time. Its first derivative, however, may be discontinuous (Ex.5-9.,
p. 415).

5. A particular case is that of a moving source of fixed density
distribution. Such sources are given special treatment later, but are
included, nevertheless, in general terms in equation (5.5-1) when T is
adjusted accordingly.
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The partial and cavity retarded potentials are defined in the same way as
their unretarded counterparts, and are required to perform the same
functions in subsequent analyses.

In writing

=jiJdS (5.5-2)
S

we restrict our consideration to surfaces at rest relative to 0 and
having bounding curves which enclose all points where a may be non-zero.
The integral is then adequate to describe the retarded potential function
because [a] is zero everywhere outside S.

* is everywhere convergent and continuous in space and time provided that
o satisfies the conditions laid down above for P.

The retarded potential of a line source is given, correspondingly, by

"- r +1 d. (5.5-3)
r

where r is at rest relative at 0 and the end points of r enclose all
elements where A may be non-zero.

The potential is logarithmically infinite at those points of r where X is
non-zero.

In writing the retarded potential of a set of point sources in the form

1o =(5.5-4)

i-I

it must be supposed that the sources are stationary with respect to 0,
since the notation cannot adequately describe the integration region
associated with movement. The sources are also required to be
mon-conservative since conservation, in the case of a point source
system, implies the constancy of individual source strengths with respect
to time. [The latter restriction does not apply to the piecewise
continuous source systems considered previously because temporal
variation of density from point to point is not inconsistent with the
constancy of the spatial density integral].
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We may define a time-dependent double layer source to have the same
limiting geometrical configuration as the time-invariant surface doublet
described in Sec. 4.3 with the additional requirement that the unretarded
simple surface densities have equal and opposite instantaneous values
(apart from correction for surface curvature) at corresponding points of
the component surfaces. Thus if we designate the 'negative' surface by
the subscript 1 and the 'positive' by 2 the contribution to the retarded
potential of a matched pair of surface elements is given by

[vjdS1]l [o 2 dS2 12
d• -- +orl r2

[odS]1  [odS] 2" - + - since ajdS1  - 0 2 dS 2  E adSrl r2

[odS]z [adS]1  [odS] 2  [odS]1

rl r 2  r2

" [adS] 1  - I- +1- ([adS] 2 -[adS] 1 )

Then on making use of mean-value theorem expansions, on the assumption
that the first time derivative of a is continuous throughout the interval
defined by (o]I and [a]2, and on taking limits as surface 2 approaches
surface 1, we obtain for the complete source

0 fS L (I L r dS (5.5-5)
ýo an [r] ) cr an h t

where n is the unit normal directed from the 'negative' to the 'positive'
surface and U is the unretarded doublet density (moment per unit area).

It is supposed, of course, that the surface is at rest relative to 0. As
"in the unretarded, time-invariant case there is a discontinuity of
potential of +41rp in passing through the surface in a positive sense at
an interior point where the unretarded density is continuous in space and
time and its instantaneous value is U.

Corresponding expressions for the line and point doublet may be written
down by inspection. In the notation employed for the unretarded cases we
have

-_-' ( r a' d (5.5-6)
an jr an~i rt ~ d,

and

#0 " p] di (5.5-7)

dl c ld
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-[.grad (5.5-7(a))

Retarded vector potentials derive from vectorial volume, surface and line
sources in the same way as their scalar equivalents derive from the
corresponding scalar sources. The same behaviour with respect to
convergence and continuity will therefore obtain, proviaed that the
scalar components of the source densities satisfy the conditions laid
down above for scalar sources. In terms of the notation employed for
unretarded potentials we have

dT volume source (5.5-8)

T

f [g1 dS simple source source (5.5-9)0 [r

S

A f0i ds simple line source (5.5-10)

r

0 dS surface doublet (5.5-11)

A I I r [a}

jo] - - ,-'-I d, line doublet (5.5-12)

The association of a vector magnitude with a stationary point, and the
subsequent definition of an unretarded point singlet vector potential,
has little practical significance and was consequently omitted from the
considerations of Sec. 4.12. On the other hand, the association of a
retarded vector potential with a moving point has considerable practical
application and merits a detailed examination. This will be found in
Sec. 5.10. Correspondingly, the unretarded source whose potential is the
vector analogue of the scalar point doublet, as discussed on p. 305, does
not comprise a vector point doublet in the conventional sense - although

the potential of the latter would take the form r . ( and could

justly be called the vector equivalent of the scalar doublet potential
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P- but a whirl, ie the limiting configuration of a closed

tangential line source whose potential, m x grad ;, is treated as the

vector analogue of the scalar doublet potential when expressed in the

form p.grad .Sr
We now proceed to show that this equivalence continues to hold in the
retarded case, where the potential of the whirl may be expressed as

[m) x grad - -

and consequently treated as the vector analogue of the retarded scalar
doublet potential when written in the form

[p].grad -

Prior to limiting, the potential of the whirl at an exterior point 0 is
given by

S=d. (I di]
0  r

r r

Let Q be a point in the vicinity of r, distant r' from 0. Then provided
thtd efndb t Land t r-

that Lis continuous throughout the interval defined by t c t

we have

[If] - (I) M " (-rr'

t-r c ct

where t --- is a point of the interval.
c
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Hence

Ao= ( 1)t-rZ r-- ( £r"r.d
r

Sr c rr

i- ;Ir d ý~rd~-t) (r r~ f d x
C t--

s c S

where S spans r.

Then in the limit as r shrinks about Q

X (0 ) dSx grad S ) d r x

c t - -
c

so that in general

= m]x grad Ff x r (5.5-13)

where m is the limiting value of IdS.

It is now evident that we may interpret equation (5.3-3) in the light of
the retarded potentials described by equations (5.5-1), (5.5-2) and
(5.5-5). We see that any scalar point function V, with continuous
second-order space and time derivatives in a bounded region of space R,
may be expressed within R as the sum of the retarded potentials
associated with a volume source throughout R of density- L dal V and

4wr
simple and double surface sources on the boundary of respective densities

3V 'L
-and - -. A well-behaved vector point function may be described

similarly in terms of vector potentials.

It will also be apparent from the result of Ex.5-3., p. 403 that a scalar
(or vector) point function with appropriate degrees of continuity may be
represented as the sum of retarded potentials which are exponentially
enhanced or attenuated with distance from the source, ie potentials based

upon the factor I eyr rather than 1. In the case of an unbounded
r r
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integration region the surface integral at infinity vanishes for negative
. R SV

values of y, provided that R grad V, RV and ! are bounded at infinity

in space and time. The corresponding representation for the non-retarded
case was considered in Ex.3-15., p. 183 and Ex.4-30., p. 258.

EXERCISES

5-9. Let * be the retarded potential at 0 of a bounded volume source which is
everywhere finite and piecewise continuous in space, and constant in
time until t - t . At t - t the density jumps by the common value Ap

over a subregion of the source which may or may not embrace 0. Show
that * is continuous in time for t a 0. Show also that the first time
derivative of * may or may not be continuous for t > 0, depending upon
the shape and orientation of the subregion, but that if the subregion
embrace 0 the first time derivative of # is discontinuous at t - t

0

5-10. Let E be a well-behaved point function which satisfies the equation

V 2 E - a a t - qt 2 
- 0

throughout the region R bounded by the surfaces S .. nE, where a and 8
are positive constants.

Show that E may be expressed at any interior point of R as the sum of
exponentially-modified, retarded (or advanced) vector potentials of

surface and volume sources, the volume density being given by )Le and
the constants y and c by

-= n 1
Y -- C -201 0 = 1+

Show further that when, in addition, T varies sinusoidally in time at
all points of R with angular velocity w and fixed direction at each
point, the volume integral may be eliminated by putting

C2 - -

where y and c have opposite signs.
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5.6 The Gradient, Divergence and Curl of Retarded Potentials

5.6a Gradient of the retarded scalar potential beyond the source

Consider first the case of a volume source of integration region T
bounded by the surfaces S £.nZ. Let the first space and time derivatives

of the density p be continuous. Then if 0 is an exterior point of T

grad r L-] d, ~ -~-f l ]d, -Z IFI ý[,I-L (I;) 1 - r -) dTj r d , ax 0  r, ax 0 cra3x, 0Latj
T T T

or

grad [LP] dT - - P] grad • dt (5.6-1)

But

grad "- grad [p] + [p] grad (5.6-2)r rr

[grad p] - --ir y + [p] grad (5.6-3)

whence by substitution in equation (5.6-1) and application of (1.17-5) we
get

grad L ] dT . ] -grad P1 dT LP' d9 (5.6-4)

- x x S..n£

and

gradf dt - f T grad (0] + _. ]r dT L_] dS (5.6-5)

T T SI1..n E

The gradient of the retarded potential is coitinuous through the boundary
of a volume source provided that p and its space derivatives are finite
and piecewise continuous in space and time. This follows from arguments
similar to those adduced in connection with the gradient of the
unretarded potential (p. 278).

The results for simple surface, line and point sources may be written
down by analogy with equation (5.6-1).
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grad f dS [ - [r] grad 1 30 r dS (5.6-6)

grd --.i d f ;j[A] grad I • c-[]de--- J-A,-- ds (5.6-7)
jr

"Sr

grad lair ad - - d r (5.6-8)

grad ~~ a] grad4 t](.68
r L1[ il

The gradient operation on the right band side of equation (5.6-8) is, of
course, carried out at the source while that on the left is carried out
at 0.

It is clear that the retarded potential of a simple surface source is
continuous for movement through the source; as a consequence the
tangential component of the potential gradient is likewise continuous.
The normal component, however, is discontinuous to the same extent as in
the non-retarded case, ie

A grad) ]jdS - -4iran (5.6-9)

S

A

where n indicates the sense of movement and a denotes the local surface
density at the instant of evaluation (see Ex.5-11., p. 423).

5.6b Gradient of the retarded scalar potential within a volume source

We proceed as in Sec. 4.8 for the unretarded case by first determining
the variation of partial potential deriving from movement of the point of
evaluation. Following the notation of that section and Fig. 4.8b it is
obstrved that when the unretarded field is slipped backwards, the
increment at 0 of the retarded potential associated with the typical

volume element Ar is ([P At_[p) AT, where the time delay for both 0' and
r

p is -. Some reflection will then reveal that ([p']-[p]) may be replaced
c

by L' Ax, where the derivative is evaluated at some point of the slip
ax

path. It will be apparent that it is the derivative of the unretarded

field at the approximate time t - with which we are concerned. OnC

following the procedure in Sec. 4.8 we arrive at

-(partial) d, - ] dr -ý f d fP dS (5.6-10)
3Xor r x

T-rT T-T6 Sl..I
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whence

grad (partial) r r0 rgrd-patil dr - [grad p] dr - dS (5.6-11)

Onus6 a -- 56 S(..n6

On substituting equations (5.6-2) and (5.6-3) in (5.6-11) we get

grad (ata) LJd, gra [p + [ap1 r T _ P d-s

f r Ira LT] j dc rr

.t-T T-T S E•-6 t-6 S..n£

(5.6-12)

and

grad (partial) 1d [p] grad d T + j--
frr L]cr2 jr

T-T6  T-T 6  S6

(5.6-13)

The limiting forms of the above expressions as 6-0 are identical with
equations (5.6-4), (5.6-5) and (5.6-1), hence the latter expressions are
valid for points of evaluation within or without the source.

The gradient of the cavity potential corresponds with that obtaining for
an exterior source but with the additional fixed bounding surface Sa

which must consequently appear in equations (5.6-4) and (5.6-5), together
with a modified volume integral.

All of the above formulae are brought together in Table 5, p. 439.

5.6c Divergence of the retarded vector potential beyond the source

Let the density J of a volume source have continuous first derivatives in
space and time. Then at an exterior point

div f- d L J [- dt -a ° ) I-- i aJ dt

f. 0 0 0
TT

whence

d i v [e ed r -d , ].g r a d . d T (5 .6 - 1 4 )r r Ft cý



Sec.5.6] RETARDED POTENTIAL THEORY 419

Since

div 2- div [7] + [3].grad (5.6-15)
r r r

d .-- + [J].grad (5.6-16)
r[ Ci-v r

we have also

div Q , divd J dT - 7.dS (5.6-17)

St SI..nI

and

r iFa fl r') Lid'§ (.-8div-j-dr - div [JI + jt2' dT - y r (5.6-18)

l..nz

Similarly, for simple line and surface sources,

"div de - [I].grad r -~d ]'r• ds (5.6-19)dvJr T

rr rr Eat r

div dS = - []rd - dS (5.6-20)

isr 
Sr 

[at ]

The discontinuity of div j - dS which accompanies movement through the

s
surface S at an interior point is identical with that obtaining in the
non-retarded case, ie

A div J T dS - -47rn.K (5.6-21)

S

where n defines the sense of movement through the surface and • is the
local surface density at the instant of evaluation.
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5.6d Divergence of the retarded vector potential within a volume source

From equation (5.6-10)

- -(pdar"ia) Lt-] d, dSx

(a rtal r r ax r X

T-TT SI .an£

hence

div (partial) f[7] dT T [div J] dT - ! ].dS (5.6-22)

"T-t Sa . .n£

On substituting equations (5.6-15) and (5.6-16) in (5.6-22) we get

div (partial) [,] dT - - [-d + ___

f 17Lfi1 gra ; 5t- d¶+ rt-Tr
T-T6 -T6 S6

(5.6-23)

and

div (partial) fi7i dr - iv [] + S

TT6 T 6 1..n

(5.6-24)

The limiting forms of the above expressions as 6+0 are identical with
equations (5.6-17), (5.6-14) and (5.6-18) hence the latter expressions
are valid for points of evaluation within and without the source.

5.6e Curl of the retarded vector potential beyond the source

At a point beyond the integration region

curl f [ d,1

.- L- (f -,, L at)_ ,ra [ [_. 9 (1) + L " a I dI!
3y-- cr Y~o L-T. J y] as° r r az L3-l8 d

0T
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or

curif 1r d¶ - f [E x grad •- x dr (5.6-25)

Since

curl ]L - curl [3] + grad x [7] (5.6-26)
r r r

"[•url + -2 + grad-x [3] (5.6-27)

we have also

curl f dr = f [curl 71 dT 4dS QjI (5.6-28)

T T S I..n z

and

curlf Ld, - F 1 dcurl (J- F3i x " dT- d-§ x 7 (5.6-29)
j r cr r

T T S .. nz

Similarly, for simple line and surface sources,

c r 11 x - x ds (5.6-30)

and

curl - dS - ¢ K] x grad-- i x dS (5.6-31)
r j r Caj cri:S S

The discontinuity of curl 4[] dS which accompanies movement through S
Sr

S
at an interior point is identical with that obtaining in the unretarded
case, ie



422 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.6

Scurl J r- dS - -47r(nxK) (5.6-32)

S

The normal component of the curl is seen to be continuous through the

surface irrespective of the orientation of K.

5.6f Curl of the retarded vector potential within a volume source

From equation (5.6-10)

curl (partial) / -] d - (partial) f--j dT- Ya I
T-T a T-T6 a -T6

r [i LaL - -iXzj r y(r .)I

T-.5 a1..n

or

curl (partial) f dT ( curl J] d-T - d-S x (5.6-33)
T-T T-6 SlS..n E

On substituting equations (5.6-26) and (5.6-27) in (5.6-33) we get

curl (partial) [f 1 dT - I x grad [a- dT +dr dS x-f - -f-1r an - --r2

T-T a T-T 6 S 6

(5.6-34)

and

curl (partial) f t djcurl [J] dT d Q]
T-T6 aT-T6 Sl1..nr

(5.6-35)

The limiting forms of the above expressions as 6+0 are identical with
equations (5.6-28), (5.6-25) and (5.6-29), hence the latter expressions
are valid for points of evaluation within and without the source. As in

the cases of grad partial pot [p] and div partial pot [j], the same
limits obtain when the 6 sphere is replaced by any regular excluding
region.
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The formulae for divergence and curl are brought together in Table 6,
p. 441.

EXERCISES

5-11. Apply equation (5.6-6) to the evaluation of grad F [ dS at a point on
r

S
the axis of a circular, disc-shaped source of uniform, time-dependent

density. Show by integration that for finite values of F221 the second
a tj

component of the surface integral does not contribute to the

discontinuity of grad j [o] dS on passing through the source. Hencey r

S A

conclude plausibly that a discontinuity of -4wa n will obtain at
interior points of any smooth surface source where the local surface
density a and its first time derivative are continuous in space and
time.

Make use of a similar analysis to show that there is an increment in the
retarded potential of 4

lrp on passing in a positive sense through a
scaler surface doublet of local density •j. Demonstrate the equivalent
result for a vector surface doublet.

5-12. For the conditions of continuity stated in the previous exercise show
that

L If [i) dS = 0
Do. r

S

where L is any tangential derivative, and
as

[KdS = -4(RK

ti div J S=-rnK

S

and

A curl r[ 1 dS = -4w(nxK)

S
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Hence conclude that

A grad CS . -4w(M.n)nf rAA
S

Adivf d x [•] = C
S r

A curl dS x [!] -4wnx(nxM) - 4vM

S 
r

A
where Mt is the vector tangential component of H and n corresponds with

the positive sense of dS.

5-13. It has been assumed in earlier pages that the discontinuities of 0 and
and their derivatives, which accompany movement through simple regular
surface sources, may be determined by evaluation of the discontinuity
obtaining with motion along the axis of a uniform disc-shaped source
having the local (continuous) surface density. While this is true for
the potentials and their first derivatives it may fail for higher-order

derivatives. Demonstrate this by evaluating A L grad ! dS for

S
constant a, where S is (1) a disc (2) a closed spherical surface cf
radius R, and noting a numerical discrepancy of 8no/R in the results.

The matter is taken up again in Ex.7-4/5, p. 633

5-14. By making use of the relationship - div [F] - div i- [F] show that at
0 o

exterior points of T

gradf div dadv[F] dtr x r
T T 0

- r ax 1r F

" " div [F] grad i dT - -r grad - dT +dS
fcrLatj r cr

T T S I.n

-f [div F] grad1dT +0 ½r L
r 18 E _

T S I..n
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An alternative expansion takes the form

grad f diVr[F] dT

T

Sdiv [1grad 1 dT + div c-•rd, + grad r, d

T T T

Prove this

(a) by writing

grad divr [ dT - grad [dir] dT - grad f [7i.crX dT

T T T

and utilising equation (5.6-4) as the initial step in the
expansion of the first term, or

(b) by writing

grad f div dT a f div [F] dr
T T

Z Idiv L (- ( +)+ (i) - ([div 7] - -- d

5-15. The results of the previous exercise lead to the conclusion that for an
exterior origin of r

I /a F 1Y F•F
Ld- t] + St gra(- ]dgrad 1dT +f Tj

r cr rI!)..L

T S 1..nE

Give an independent demonstration of this by proving and utilising the
following relationships

at c~ r _ -dL C ,-div Lr + cr [StJdr

[a -F -r r .~

T T
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dlv • ".dS grad --y d,Idiv dr 2-cr2 cr2
Ma] i Li - ŽAf i d

r-Cr d+cr- d

SI..n E T

r- -4~.- o-,r Lj dd,
T T

5.7 The d'Alembertian of the Retarded Potentials

5.7a d'Alembertian of the retarded scalar potential beyond the source

Let the scalar source density have continuous second derivatives with
respect to time. Then at an exterior point of the source

div grad [ dT
f r

T

div J - [p] grad +

T

-L C , L(I + (x-xo)
ax ax c P0, it-]o

- ~~ ~ ~ -I~p-1~1r;2( )2 F1(x-x ) "a 2

32 +2• (x] -+
J ax~kr cr Laa r, aLj T?--o r ~~jd

- j ~ ~ V2 1)+ 1 -ao 3~L~ 2~~ +c 2]i~d
i ]+aTd

4 I -- 3 t - C

1!a el d
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whence

(V2~ .) [ L0 dT - 0 (5.7-1)
T

or at exterior points

del pot [p] - 0 (5.7-1(a))

By similar argument

dal f [a_!dS - dal pot [a] - 0 (5.7-2).• r

S

del -L- ds - del pot [X] - 0 (5.7-3)
r

del [a] - dal pot [a] - 0 (5.7-4)
r

Since the d'Alembertian of the retarded potential of a set of individual
simple sources is zero beyond those sources it is fairly obvious that
del * will be zero outside any doublet source. This may be demonstrated
by direct differentiation of the doublet potential. (See Ex.5-17.,
p. 432.)

5.7b d'Alembertian of the retarded scalar potential within a volume
source

If the source density has continuous second derivatives in space end
time, then from equations (5.6-11) and (5.6-22)

div grad (partial) ( [] dT
r-x

-div (partial) [grad p] dr - div [P] d• Sr dr

. Id iv gra d r d r - [g r a d p I d S - P ]Ed S

ra . S..r x

T S r S Z
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f div grad P] dT gra [p.- T j•r•_
- digrd] g~~rad E0 ].dS-f [• .dS

S..n..n E

S .. tn

[div grad p] dT grad [r].dS - 2 cr t Lid + [p] grad

S r S Z S r1-6S..n S1..n S1..n

(5.7-5)

On substituting for [div grad P] in accordance with equation (5.3-1),
(5.7-5) becomes

f!(V2[pj + . gra L2 ~~ =

T-T6

r-tr

- i -1 I I s zfL j -r2 cs

S 1..nE S I..n;

Now Green's formula when applied to [p] in the region r-T, yields

0 - a-[P 1 (p] -a dS V2[p] dr

S 1 .. nE, S• TTs

hence the previous expression may be written as

grdcr d- .d~s 53 2- Pa p] dS

T-*• S I 1.. n£

But

dive 2~ + 4j +X.grad 55-
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so that

27r ]ap- 2 I

fsr~t d~s -Cr- rj~ 2 + grad [ dJ &SlI..n Z, S6 T--T

Substitution then yields

div grad (partial) Lf d,I- dr

T-T•

XfiI-P]~ ('1> 2 a,) L r dS 1 La2
D ~ an Pan '/+cr an L-a~tJ dSj r d
5S a -T 6

JL ýL-nj + cr an ap] a t2  r
an (1 LL d

5 T-T 6

or

dal (partial) d--- dT L-1- [ 1] S (n 5.-7

S-T 6 6S

On taking limits we obtain

dal f LP dT - -4np (5.7-7)
Jr

T

where p is the instantaneous value of the source density at the point of
evaluation.

5.7c d'Alembertian of the retarded vector potential beyond the source

It follows from equation (5.7-1) that if the Cartesian components of the

vector density J have the required degree of continuity then

dal - d - dal l f d dT 0

T T T
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But

V2f [ dT - Z j V2 Jxdr

T T

hence

V c2at 7- dT _- J2 (J2 dT

T TT

whence

dalf [13 dT " 0 (5.7-8)

at exterior points

or

dal pot [2] - O (5.7-8(a))

Similarly,

dalf r dS - 0 (5.7-9)

dal [y] ds - 0 (5.7-10)

r
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5.7d d'Alembertian of the retarded vector potential within a volume
source

Proceeding as above, and for a density function having continuous second
derivatives in space and time, we have

V2 (partial) [J' d,

t-t 6

- TV 2 (partial) - d
r

T-•6

7L~+ LL - 1 1--L dS + 'Q' dr
L n an cr an 8t c 3t2  r

S6 T-

or

da (atilf [T] f•1F• a--• a (1> ~1 ar Fat1)

dal (partial) J y- dT - LL(;I- + L + r y3-jj dS (5.7-11)

and

dal ] dr - -4wrJ (5.7-12)

An alternative derivation of (5.7-11) and (5.7-12) involves the expansion

of curl curl (partial) f0 dr and grad div (partial) f 7- dr. This is

the subject of Ex.5-20. to 5-22., pp. 434-8.

Like their unretarded Laplacian equivalents, dal pot [p] and dal pot [J]
are convergent since equations (5.7-6) and (5.7-11) continue to hold for
any regular excluding region.

lI
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EXERCISES

5-16. Make use of equation (5.3-3) to show that

dal i-a. - - +- r F dS - 0~ran an cr an

SI..nz

within and without the region R bounded by S.n when dal 0 in R.

Show that this continues to hold when del # x 0 in R provided that the

second derivatives of - and with respect to time exist everywherean at
upon S1..nZ, and that the relationship subsists when referred to an

element of surface dS.

5-17. From equation (5.5-7(a)) the retarded potential of a scalar point
doublet is given at an exterior point by

= - ~- 7kt cr2

where p is the vector moment of the doublet.

Show that

3rl +7 37r ~ r. d2
= - ,[• + d1 d_ 3r -- • -- - 2p•-

grad*- i.[7 L2 c-r r. L ci r - dti

Hence prove that

72f r divP_ _ d 3- 1 2-, - - c r.

or dal 0

Show further that

curl [-rPi X 73 -dýr grad p -r [At] r cr It

5-18. Proceed in the following way to evaluate the d'Alembertian of the
retarded potential at an interior point of a volume source.

Expand grad div (partial) f 4 dT and curl curl (partial) fQ-- d,
T-. T-rT
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in accordance with equations (5.6-11), (5.6-22) and (5.6-33), and after
further expansion and cancellation of terms derive

V2 (partial)f 2-1 dr

T--T

1[723 dT + i (dS§ x curl [3]) rdv [3J dS - 2 F-J 7 . dSj

-T 6 Sl E

+ J].dS grad r - [Jl.grad - dS + [T] grad

S1..nr

Bring this into the form

[V2
J] d¶+ d x curl [r- - div dS + 2 [:T] grad U.dS -2 l .ds]

T-T S E

and apply equation (1.17-13) to obtain

(7V2J] d¶ + 2 []grad 1'§ - (dS.V) ]r-- 2 [apt rdS

T-T8 Sl.n

Reduce this to

I d + 3 (dS.V) [3- 2 dfr [V.! dSra r -r Nlcr 29
T-T6 Sl.zn

and make use of the analysis following aquation (5.7-5), of which the
above expression is the vector analogue, to arrive at

dal (partial) [•]r - fL1  - [ 1y + •- at] dS

•": xT-T S8L6
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and

dal -3- dT - -4wir

T

5-19. By working from equations (5.6-14) and (5.6-25) show that at points
beyond the source

grad div - dT
Jr

T

" - + 3r r.[J]- c + -c rr . " d

rr

rg ( Fa1 \r F

T

and

curl curl f - dT

T

"tI L''J'") grad r c- r cr- r + cr r. [gJJ dt

-r-2 + --,, r. + r Fý] d
-r 7 aDr

T

5-20. Prove that

grad div pot [JI

- + r~T r I-a2-Tl

JL KatJ2-f r- Ia~ r a i dTT

+ Lim, f ([3].v) grad 1 d, - Lim [(JI.dS grad I

T-'t' St
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at interior points of T,

by proceeding in the manner outlined below.

grad div partial pot [J]

- ~ ~ ~ 7 1a 2 7j] - ~ .~- grad div [JI + c grad + - div + d• r.(•-j 3d

+ [7JJ.dS grad r div (71 dS - . d -S [3 CS

SI..nE

-a- 7 r - Fa - 2
Sdiv [j grad -+ + di[ + rr. Lat dT

T-T6

S i.n E S6

f([J].V) grad [:9 - c)7 r - a + rtjJ dT

Fr" --"R71

+ j y ][div dS - [7J].dS grad 1 + L .d

S6

5-21. Prove that

curl curl pot [J]

- ~ cý + -=(.57)3 +~f~ + 5[J]d

1 + ([ V].V) grad 1 dT+ i'd0

T T--T tSt
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at interior points of T,

by establishing the following relationships:

(a)

curl curl partial pot [5]

f [curl curl j) dT

+ rad 1 x (d\xr) - dig x ct

SI..n

(b)

I (curl curl 31 d¶

T-T 6

- i xcurl - grad i x f - grad r (-- d,

f I r~ ~~ [Tot] r kr [ý tf ra r c + crX Ftjj '
T-T 6

+ ýsx 1curl [13 + CSx QI xn S

(c)

LI _ + -7) + curl
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whence

s 1.. nz, S6

T--T6

1 v - - cur-

whence

[ rc.grad ý dS

SS1..nrZ, S

g= ad (V .V) ) []([E.V)gradJ + grad . x curl [ d J

gr .dr gr ad + x curl [3] d r + [] grad .d

""rr 
rT-6 

Sl1..n Z, S i
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(e)

curl curl partial pot [3]

- (J•L .V ) g r a d j - • + r r T-] + [r a 2 j d]

1 ~ ~ ~ c at fLudTx Fii
T-r 6

- T2 at2  d, + r× [curl 31 + grad 1 x ([J]xdS) - - x dSj"r r' rt r

T-T S8

5-22. Use the expressions derived in Ex.5-20. and 5-21. above for

grad div partial pot [(] and curl curl partial pot [3] to show that

dal partial pot iv - S - sxcurl Q- +2 ?j-j -d.grad

S a

and transform this by means of equation (1.17-13) into

dal partial pot [3] - Ln - [i ( () +-- L dS

S 6

5-23. By proceeding via equations (5.6-22), (5.6-11) and (5.6-6) show that

grad div partial pot [J]

-Ijdiv 7] - + div j dT r iQId + all]dS Cý

- d6 SJ. En

+ 1 [div J]d§

$ 6
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Show similarly that

curl curl partial pot

- [curl~ :1x + [Icurl] dT~

T-T6

+ (d•X[J1) + ( a x + dS [ curl

S E.. r S6

TABLE 5

The Retarded Scalar Potential Function f-L] dT and its Derivatives
(i)

pot [p] L 1 ] dr (interior and exterior points of T)

(2)

partial pot [p] LfP] dr (evaluated at centre of moving 6 sphere
i r within T)

T-T6

(3)

cavity pot [p] - f[-i dr (defined throughout fixed 6 sphere within T)

T-T6

*:

!,
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TABLE 5(CONTD)

(7)

dal pot [(] - 0 at exterior points of T

(8)

dal pot [0] - -4%p at interior points of T

(9)

V2 partial pot (0] - partial pot [V2 p] - [23i E (1> ÷ + Fr ldS
rnan/anrýr

l..n

(10)

del partial pot [p) a A + 1 ar d
r (p] 3n, rn it

S6

S(11)

d al cavity pot [p) - 0

rI TABLE 6

The Retarded Vector Potential Function "]- dT and its Derivativesr

pot 131 " [-• dr (interior and exterior points ot T)

(2)

partial pot J] - [ d- (evaluated at centre of sovtng A spherer within *,

t-,
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TABLE 6(CONTD)

(3)

S[71
cavity pot [J] = f --- dT (defined throughout fixed 6 sphere within T)

T--T

(4)

div pot [3] - f [div5] dT ~

SSI . .nZ
interior

and
.- f 7T.grad5.,- fL.i- d. exterior

T points of r

f d i div [JI + d7, r 1: r] - Cf

T S

(5)

div partial pot [3] f [div J] dT - 1 d--

T-'t SI.n

" " f[JI].grad _rj dE.. +d C. d

"T- Tr6 S 6

- div [J] + a- i d* - [.dQ
[r -tr S 1 .J .r
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TABLE 6(CONTD)

(6)

div cavity pot [21 " F! [div J] dT - f .ds

T-' S.., S6

"= -f r[J-.grad ' _ F•] dr2i

T-T 6

!dv [7 ]+ [K• .7r dT- .[]dS

T-T 6  S1 .. n Z, Sa

(7)

curl pot [(] - F [curl 7] dT- dS x
Jr J r

interior

and

[7] x grad r - x dT exterior

T points of T

SS1cur.l" d ds

S...n
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TABLE 6(CONTD)

(8)

curl partial pot [J] = f [curl :] dT - dS x U

T-T6  S1.. n E

" "J x grad -T +

-curl [ -dT- d4 xW [J

r rrx- cr J -•r]d -fSx £

(9)

curl cavity pot [J] - [curl Y1 dT - dS x r

f r

T-T6 S1 .. nr, S6

= ]x gad x- x dT

[I !curl 1-1 7J Cý dT d-9d [:

L~ jT -T 6 S I . . n , S 6

(10)

dal pot [J] - at exterior points of T

(11)

dal pot [j] - -4wY at interior points of T

(12)

del cavity pot [71 -
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TABLE 6(CONTD)

(13)

dal partial pot [] - div -Q dS-dSxcurl Q + 2 FdS-2ETdIs.grad
j r r ~ Jc'

S6

_r EaiT' dSr f rn an jr-r o3tLP
S6

(14)

V2 partial pot - partial pot [V2- r + L -L drS

r3 9J [a3j a cr n dt

m 1..n

(15)

grad div pot fJJ

- f •jdiv 3] • + div J r r d - d" L[ 5]'dS + L "dS

SS
1..n

(interior and exterior points of T)

(16)

grad dlv pot 131

tt
(exterior points of T)
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TABLE 6(CONTD)

(17)

grad div pot [J]

-r + + r -

(interior points of T)Lim Lim 1
+ L'i [ ([j].V) grad ! dT (3[J].d4 gradr

T--T St

(18)

grad div partial pot [J]

d i v] g + div -- dr -f ].d'r3 + L- d -51
T-T6  S E

+ 1 [div J) dS

S a

(19)

grad div partial pot (J]

U I([•".) grad -t11 V) + r-+ r-

T-T 6

S(dLv J] dS - [Jl.dS grad - 'at d_

s6

(20)

curl curl pot (!I grad dlv pot dr (exterior pointsc )t r of T)
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TABLE 6(CONTD)

(21)

curl curl pot [3] - grad div pot [r]- • f + 4iJ (interior

T of T)

(22)

curl curl pot [3]

--f curl 3] x T+ [ curl r dT

T 
(interior and exterior
points of T)

+ (~x:] xf + (ds F1).TI
S1..nE

(23)

curl curl partial pot [J3

" - curl F] x 1 + curl x dr

+ ýjd~sxrY]) x + (d'§ LX jx- + j d~sx 1 (curl 3]
SI..nE S6

(24)

curl curl partial pot (31.~ ~ ~ ~ ~ t .,,.,.,>,), -
T-T a

d, + dý [curl J)]+((Jj1dý) x- +(L x d-xS
C t r r rlc

T-1 S6

S
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5.8 The Gradient and d'Alembertian of the Scalar Point Function

F .grad [- .ý dr

This section, and that which follows, parallels the developments of
Sec. 4.18 and 4.19, to which the reader should refer. The function under
consideration is identical with the retarded potential, at exterior

points, of a limiting configuration of point doublets, P being a well-
behaved point function derived from the doublet moment per unit volume as
discussed in Sec. 4.20a. The integral is known as the macroscopic
retarded potential of the doublet system. It continues to be well-
behaved at interior points of the source, whereas the true or microscopic

potential, viz p.grad - F4'- . becomes discontinuous at the

doublets themselves.

It is easily shown by expansion of div 11--, and subsequent volumer

integration, that for an exterior point of evaluation

S Pg.rad c - [ d, - fd + f d5 (5.8-1)

T T $ 1..nE

The same relationship holds for an interior point of evaluation provided
that we interpret the volume integrals as the limiting values of such
integrals when taken over the region T-r', where T' is a subregion of T
which includes 0 and shrinks uniformly about it. It follows that the
macroscopic potential is equivalent, at interior and exterior points of
r, to the combined retarded potential of a volume source throughout T of

density -div P and a surface source over Sl..nE of density P.n. It is

consequently convergent and continuous everywhere, while its gradient is
_ A A

discontinuous through S .. nX by -4wP.n n.

The partial and cavity macroscopic potentials are defined in the usual
way in terms of an excluding 6 sphere.
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5.8a Gradient of ]P.grad 1 - [-F.-j dT at interior and exterior

points of T

Since equations (5.8-1) and (5.6-1) are valid &t interior and exterior
points of T, we have in each case

grad f ijP]-grad 5 . r dT
grf [ d dr +grad

T

" grad [- d -v P] dv + grad dSgf r -r" I

T S 1..n "

T S "1..n£

(5.8-2)

Reference to equation (5.6-17) reveals that the right hand side of

(5.8-1) is identical with -div f p]! dr at interior and exterior points

fTr

of T, so that we have also

sradf K[7F.grad 1 -op

T

grad div [ dr (5.8-3)

T

- curl curl f [_ dT, V2 IF IdT (5.8-4)

T T

The curl curl term may be variously transformed as follows:
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curl curl dr - curl FP x grad - - X d (5.8-5)

T T

-curl f curl F] dT curl fd~sX fpi (5.8-6)
S r

T ~1 . .n£

- curl PFlxgrad curl - dr + f~rad 1 x(d*§x[F]) r x dSr [Lt lx~r 19 r Pat
T S1..nr

(5.8-7)

In particular, a combination of equations (5.8-4) and (5.8-5) with
(5.7-8) or (5.7-12) leads to the relationship

rad fPl.grad - L -cr- Td
T

- curl Fp]xgrad l X-f d -[ 1 --1 d + (eUteriori e[ [atj C_ Trr 5P r ~ 4wrP (interior
T T points

of T)

(5.8-8)

It will be sa_ that equation (5.8-8) reduces to (4.18-8) or (4.18-9)

when c-- or - 0, ie, when retardation is absent or the system is

time-invariant over the relevant interval.

The corresponding expressions for the gradient of the cavity potential
are derived from those of the above formulae which apply to exterior
points of r by modification of the volume integral and the addition of S
to the surface integral.

5.8b d'Alembertian of fP].grad d - . dr at interior and
r c

exterior points of r

From equation (5.8-1)

.grad - - di v T dT - dal dSdal -]. r i - . d - dal div

9 T Sr..n

within and without the source,
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hence from equations (5.7-1(a)), (5.7-2) and (5.7-7)

dal a - di - 0 (exterior points of T)

fJ ~L~ ra ~Jc 2  Lt- 4wdiv (interior points Of T

T (5.8-9)

It follows at once that dal cavity pot - 0

The above relationships, together with the corresponding formulae for
partial potentials, are brought together in Table 7, p. 460.

5.9 The Divergence, Curl and d'Alembertian of the Vector Point Function

I x grad - - x - dT
r at C~

The function under consideration is identical with the retarded vector
potential, at exterior points, of a limiting volume configuration of

whirls, H being a well-behaved point function derived from the doublet
moment per unit volume as discussed in Sec. 4.20b. It is known as the
macroscopic retarded potential of the system of whirls and, unlike the

true or microscopic potential, viz m]x grad - x r It is
~~[m]1 crR i

well-behaved throughout the source complex.

Expansion of curl [-] and subsequent volume integration leads to the
relationship r

[MH] x grad ; - x T dcurl d¶ - 0 dS -[M] (5.9-1)

T T Sl..nz

at exterior points of t. This holds at interior points also since the
surface integral taken over an excluding surface drawn about 0 vanishes
in the limit as the surface shrinks uniformlv about 0, and the associated
volume integral is convergent. The macroscopic potential is consequently
identical with the retarded potential of a volume source throughout T of

density curl A and a surface source over S I..nE of densitv M - n and. as

such, is everywhere convergent and continuous.
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5.9a Divergence and curl of Mx grad [ 'M x r2

~~M][ xgrtj L ý] -r dT at

T

interior and exterior points of T

Since equations (5.9-1) and (5.6-28) are valid within and without T we
have in each case

x grad - x dT - curl - dr (5.9-2)

T T

whence

div M]x grad - x r2]d - 0 (5.9-3)

T

at interior and exterior points of T.

The divergence of the cavity potental must likewise be zero.

From equations (5.9-1) and (5.6-25)

curl (MIx grad x - jj- xc3 dr

T

" cucur l url M] dT - curlb dS x [H]
r r r

T S ..n

[curl MIxgrad curl J xr!- - dr + + rad !x(d~x[M]) - -x (dSXL

S1..na

(5.9-4)

at interior and exterior points of T.

Also, from equation (5.9-2)

* I ~ -- 
I

curl M] x grad 1 - r dT

T

°curl curl [M)- d, (5.9-5)
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grad div f -- dr - I dT (5.9-6)

T T

The grad div term may be variously transformed as followe:

grad div f [M] dr
r

= - grad f I..rad r - dr (5.9-7)

T

grad [divM) dT - grad L •.dS (5.9-8)

1 r -r£

T S1 . .n Z

-
1 -div R] grad 1 + div dr + ].dS grad _r

s J
T S U 1..n

(5.9-9)

A combination of equations (5.9-6) and (5.9-7) leads to (5.8-8) with H

replacing P. Since the divergence of the macroscopic potential is zero
at both interior and exterior points of the source, its discontinuity
through any bounding surface is likewise zero. This result follows
independently from the observation that the divergence of the first term
of the right hand side of (5.9-1) is everywhere continuous and that

A divf d xCS = 0

S

in accordance with a result of Ex.5-12., p. 423.

Correspondingly, the discontinuity of the curl of the potential for
outward movement from T through a point of S l..u is given by

A~ curl{.. d-9 4A
t

where Kt is the local vector tangential component of M.

t|
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(0) curl curl d? x iM-r

* curl (cr•

s6
S 6

" "- 7 dSu [div curl MdS (grad(curl M)J )
S6

0 curl RI dS

S6

(f) V2  d'§ x M curl d

S8  S

5-25. By writing

f ].grad d - dT - [-div •] dT + IT .dI

-Tr T--T6  S 1  r, S6

show that

1_F ]
grad (partial) f/I].grad r -a r- d

T-T6

" - f [grad div F] dT + [div P] dS- [f].dS grad 1 + • FP

r ~ ~ ~~ i r .=r -

I -- l.n

+ grad AS-.
jr

55
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14div F) grad - div dT +~~Lf~i- P.Sga

5-26. By vritirag

I[ ~r ad.. d~ c- ý [trcurl RI dT - R * dLI I r

show that

curl (partial) f jixgrad --

[ curl curl ~Jd r + f [rad 3Rx(~ [ ]-~ x~ [c r ]~ ~ x. ~ -

-curl d-9 . _

= f c u r l Mqj x grad + 2x j- c u rl ~ j d

+f gradi x 
gc~[] - ]

s I..nz
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(5)

grad (cavity) Srad M

r 3Ed
1i F FiI r) +a 2  ?dl,

.T- hf-1.d

cugrad (cavity) F rdd p -

T-Ta

" c radf l.rad F- •+ c dr -, cP

for evaluation at the centre of the P sphere.

at J...m m d,
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(7)

&rad (partial) F.grad d -

r at
- [-div L 

+]R

T-T 6 a
1

- i~ (dý r) + Fil.\c rr

curl (partial)f Foi 1ra c~1 dT- dT

F1- r [p-1 r fi2

S6

(8)

T-T

(9)

da cvt) (Jird~-i1r-

St
,I.
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(10)

T--T

dal (Vartior ~Poten rad F -to ]•gad•- • d n

L at -5j

-~7 Ifdi Id.3 l

curl P+ [ curl d (nero
_ \Cr at? r

TABLE 8

The Vector Potential Function It cra dTr and its
Derivatives_

[H] rad ~ 1 ~[cur ~ - (interior

-xKra dT [cr dT ~dS-9 and
r r r~ exterior

points
S..n of T)

(2)

~~~ [[ curl~ -

partial r 1x grad 1 x-dT - r SK

T-T T-T 6  S .. , S

(evaluated at centre of moving 6 sphere within T)

(3)

cavity H] x grad F ! x dr - -(curl] d i dS X r
T-T6  T-T6 S..n, S6

(defined throughout fixed 6 sphere within r)
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(10)

curl (partial) x grad - [. x dr

T-T 

•

S6

grad (partial) f [H]'srad I • dr c-' •- r dr

T w cudl -w(interior points of r)
S((2)

dal (cav ty)f i xgradl) &rd 2dT 0

T--T

d 
-
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(13)

dal (partial) f ] x grad - x [ d

T-T a

-f rcurl dii - + curl d-] ~ r - (div Ri] (d-S x ;

f [IT r),f ,
- div N] dS + (d- 4 x [curl R] + (d X ~i)x curl

+2 , .v( + -51] + 1- d

S6  S6

5.10 The Li'nard - Wiechert Potentials

5.lOa Translation of a volume source

Let a rectangular system of axes maintain parallelism with a fixed
reference system while its origin 0' moves in a straight line. Then if
the density p of a volume source which is a function both of space and
time can be expressed, for appropriate motion of 0', as a function of
position alone in the moving system, the source is said to have motion of
translation as a whole identical with that of 0'.

5.lOb Retarded scalar potential of a translating volume source

Fig. 5.1 depicts the region of space occupied by a volume source at the

instant of time t -- , where P is a point of the source. It is required

to determine the retarded potential of the source at an exterior point 0
at the time t.
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fp Q I

0

Fig. 5.1

While an element of the source at P will contribute directly to the
required potential in virtue of its position, an element at Q will not so
contribute unless OQ - rp. Nevertheless, the latter element will

contribute at the time t -r + At, when it will have moved to Q'.
c

provided that t -_:r + ft t _ r' where r' - OQ'. If the velocity of
C C

the source and its time derivatives at the instant t - - are written as.. C

v, v, v ... then the required condition becomes

QQ' - (rp-r') + L- Y- (rrr') + (rp,-r') 3 +

which gives rise to the three scalar equations

v v
x - x + •- (rp-r') + x (rp-r') 2 + L v-- (rp-r') 3 + ......

v , vv
- y +- (r,-r') + • (r -r') 2 + (r,-r')3 . ...... (5.10-1)

c P 2! c P 31c P

v v v
' " cz+ (r-r') + L (r-r') 2 + (r -r')3 . ......

c P 2! c P 31!f

where (xy,z) and (x',y',z') are the coordinates of Q and Q' in the fixed

reference system.
An appeal to the construction detailed on p. 409 suggests that, so long
as v < c at all times, a single solution exists for x', y', z' in terms

of x, y, z, rp, *, etc, and Q' approaches Q as Q approaches P. Then if

all points (x,y,z) of the distribution as shown at the instant t - - are
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moved to (x',y',z'), the appropriate source configuration is obtained for
the evaluation of the retarded potential at 0 at the time t. On the
other hand, if no restriction is placed upon v we may expect multiple
values for (x',y',z'), in which case the source will contribute to the
retarded potential on more than one occasion during its movement. This
possibility will be ignored in the present analysis.

A volume element centred upon Q does not retain its magnitude in passing
from Q to Q'. It has been shown in Sec. 2.11 that if AT and AT' are the
respective magnitudes then

AT' - J (xi ,y I Z- AT (5.10-2)\ X,y,z )

3x' 3x' ax'

ax Wy az

_ _where i ýx',yz y., ay, ay, (5.10-3)w e xpypz a ax ay as

az' ax' 3z'
x ay az

Now it follows from equation (5.10-1) that

tvx vx ar' I I
ax' .r1 x -_(r -r')2

ax c x x c- (rP ' a%

or

x' 1-1a-
ax ax

where

v v V"1 - (rp-r') + F, (rp-r') 2  ......

Similarly,

1y 2- and -2 - I
ay ay as as

Further,

! am a r' pL' ar' (5.10-4)
ax ax ay By as as

ax- - ay' as' a3 " " ax a - y ay ax a
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where

V VV"a - .1-1+4 (r-r') + 4 (r -r') 2 
+ .....

c c~ P 21 c~ P

and

VV V
n - 1 + - (r,-r') + L - (r -r')2 . .....

On multiplying out we find that

- 1yl m2- _ i (5.10-5)\ x,y,z / Bx - B--nTy z(.o5

But

2r' ar' ax' +r' gr- Br' + :'
a - W -ii +a ax, a

and

r' {(x'-x o) 2+(y'-yo ) 2+(Z'-Z )2)&

hence

ar' (x'-x0 ) ar,\ (Y--yo) Dr (z'-zo) Br'ax rT -I Tx- ax/n-
-~- = *~ -x r' ax r' Bx

or

Ii (x'-xo) (y'-yo) (zz) t x'
•r +i+ n • = -x (5.10-6)Ux rv rv rv rv

Similar equations hold for Be and Wr'
ay az

Substitution in equation (5.10-5) then yields

(x'-x (y\ x~,J t+ < 0-) + __ + n
r rr r #
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or

\ x,yz /

I + • + (r-r') + - (rp-r') 2 +

(5.10-7)

Since o is supposed to remain constant during the movement of an element
from Q to Q', the required retarded potential may be written as

S- j T- 7- (5.10-8)
T I

where T' is the region defined by all points Q', and this may be replaced
by

0 f P dT (5.10-9)I (- " 1
r(rp-r + + (rp-r') 2 +

where the integration is carried out for each element AT of the
instantaneous source distribution T, but where r' relates to the position
of the corresponding element AT'. (This mixed type of integration is
necessary because rv has not been expressed explicitly in terms of the
coordinates of AT).

5.10c Retarded vector potential of a translating volume source

It has not been possible in earlier pages to associate a vector potential
with a volume source of scalar density._ This is effected in the case of

a translating source by substituting 0-v for P where v is the velocity ofc

the source. In the present instance this leads to a retarded vector

potential defined by 6

;' dT' (5.10-10)
.rc

where ;' is the velocity associated with the element AT' (ie the velocity
of the source when the typical point Q has moved to its appropriately
retarded position q').

6. The presence of the retardation constant c in the denominator of the
expression has no theoretical significance but permits of the developuent
of certain relationships in the so-celled Gaussian form. See also the
footnote to p. 519.
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Since the expression for the velocity of the source in a neighbourhood of

the time t - -r is given by v + vAt + v (At) 2 + .... we havec 2!

v - v+ (rp-r') + L v' (re-r') ....

whence

pf + (rp-r') + L- v (rp-r') 2 + ... dT
X 2 Z . (5.10-11)

T cr' + + ( (re-r') + L v (rprf +

5.10d Retarded potentials of a point source

If the volume source described above is allowed to shrink uniformly about
P while the source strength f pdr is maintained constant and equal to,

say, a, then since r'orp as *7rp, we have in the limit

* a (5.10-12)

rP (1 +

av•
A- (5.10-13)

crp (1+ T

The general expressions for the potentials of a moving point source are
consequently

* - a (5.10-14)

[r (I + 1r)]

. a•]a__; (5.10-15)

c[r (I r)

These expressions were originally derived by Li6nard and Wiechert, circa
1900, and are known as the Lifnard-Witchert potentials.
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It is convenient at this stage to denote the retarded quantities
associated with point sources by capital letters. This renders the
square brackets redundant and makes lover-case letters available for the
representation of instantaneous quantities. In addition, the positive
sense of the radius vector will now be taken to be directed away from the
source. The above expressions are consequently replaced by

a (5.10-14(a))

A aV (5.10-15(a))

cR(1 -

where VR is the resolved part of V along R.

EXERCISES

5-33. Solve equation (5.10-1) for x'. y', and z' in terms of x, y, z rp and v

for uniform motion with v < c. Hence derive a single-valued expression

for 7' - i and confirm that r'e.r as rer.P.

Aa 1- Tr- • I.•+crp_ •-.Tý+crp) 2+(c2-v2) (r2_r 2))11?Axis: r' - r - c 2 
_

2
v2

5-34. By decomposing a uniformly moving source into a system of elementary
prisms lying parallel to the direction of motion, and making use of the
'expanding sphere' construction detailed on p. 409, show that the
contribution of each prism to the retarded potential at an exterior

Spoint is increased approximately by the factor 1 a result of

c
the motion, where VR refers to some point of the prism. Show further

that the expression becomes exact for a point source irrespective of the
density distribution before condensation.

5-35. A particular source translates with constant acceleration. Show that
although the time reversal of source density, as required by the 'moving
sphere' construction, involves a reversal oef source velocity at t - top

the acceleration is unaffected. Show also that the ratio ATV/AT
exhibits a variation across the source because of the transit time of
the spherical surface and that this complication vanishes when the
dimensions of the source approach zero.

5-36. If the velocity of a source having constant acceleration is unrestricted
the source may contribute once, twice, three or four times, or not at
all, to the retarded potential at a specified place and time, depending
upon the position and velocity of the source at the instant of
evaluation. Demonstrate this for the case of a source moving radially
with respect to the point of evaluation.
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5.11 Space and Time Derivatives of the Lisnard-Wiechert Potentials

5.11a Fundamental relationships

0

R2

A 
R

P1

B

[In this and subsequent figures, arrowheads are placed in the centres of
the associated vectors if required to ease congestion.]

Fig. 5.2

Fig. 5.2 depicts the path AB of a point source which occupies the
position P, at the time tit and P2 at the time t 2W. The source, when at

Pi. contributes to the retarded potential at 0 at the time tit +-l

when at P2 , at the time t 2 ' + c t2.

Hence

t 2  - ti . t2 * - tit + C

If V1 is the velocity of the source when at P1 then

R2 - R, VI (t2 '-tl
1 ) Cos e VRI 4 2

1-t1')

where V is the radial component of V at P1 , hence

t2 -tl (t2'-tl') I -- Ri
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If we restrict our considerations to the case V < c then the factor
VR

I - - is always positive, so that later contributions to the retardedc

potential at 0 are associated with later positions of the source in the
path AB and a 1:1 correspondence obtains between t, t' and a point of the
path.

We now take t to be the independent variable and write

t 2 - ti
t 2 l - t lR

c

whence in general,

dt' 1 1
- VR

c

where

VR y.R
- I -c -I -R (5.11-2)

It follows that

dR dR 1 VR (.1
dt- - " (5.11-3)

and

dl-t " d'l 1 = - (5.11-4)

Similarly

dV- dV" I V (5.11-5)

where V is the acceleration of the source in its retarded position.

Further

dt I d
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whence we find from equations (5.11-3) to (5.11-5) that

de I 'V."a *2  25116

We have also

t " -\ t JR• dt adt ,cR

c do

or

d2R V V2  R 2

- . - (5.11-7)

Finally

d2j d ( V & d dV
d - d-t Q/ " ,2 dt adt

or

OR Fi c j 2'

dt2  - - • aR + a•i -- (5.11-8)

We now proceed to derive expressions for the space derivatives at 0 of R,
V, a etc, corresponding to a fixed time of evaluation in a neighbourhood
of 0.

A

Q2F 5

Fig. 5.3
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Let Q2 in Fig. 5.3 be the retarded position of the source corresponding
to evaluation of the potential at 0 at the time t and let Q1 be the

retarded position for evaluation at 0' at the time to. Suppose that the

source occupies the positions Q, and Q2 at the times t 1 ' and t 2 '

respectively, and that 00' - TAx. Q2 T is equal and parallel to 00'.

Nov

R, R2ti' +-- = t 2 ' +-- = t
c c o

hence

i R, - R2

t2l - t1' -

But

R, - R2 • Q1 T cos * (VI(t 2 '-tl')+iAx).-

vhere VI is the velocity of the source at Q,

so that

(Rl-R 2) - - ax

whence, in general

3R""a (5.11-9)

Also

- -.(RI - 2)
Ri-R 2  Q" T V1  - +iAx

vhence, in general,

LR Y c +Rx

ax c ax
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or, from equation (5.11-9),

3R + V i.R (5.11-10)

Further,

3-- avat -a, a t, R - V 3R
t x aR Bx T~x

or

3V acR (5.11-11)

Finally,

1 iýaV I _!.a1 -.1aRý
__ 1 VR, V.

ax T~X \R} ) z R R ax i

whence from equations (5.11-9) to (5.11-11)

V R i.R i.V V2 .f.R V.R i.Rax = 2
0 cR - ;C

2 R2 + ac-2

5.lib Derivatives of the potentials

It is now a straight-forward matter to differentiate the Liinard-Wiechert
potentials, provided that the results are expressed in terms of retarded
quantities.

Taking

a a

we have

1~ 1 ag 1 JR

;a x ; 2_R Yx a- n ax

whence we obtain

V21.Ri .R i.V V.R i.R
a~x a TG 3 a2R + 2cýR a- .Wl



480 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.11

so that

1rad4 - - + R - (5.11-13)grad2CR2 Q3c2R3

Similarly

whence

1 - V2 -

a~t R -- RC2+(5.11-14)

Again, with

S--
aV R aVo

we have

aV
div /, x caR

whence we find that

di A 2 - vR (5.11-15)

or

div , - - (5.11-16)cat

Also

5curlA ~-~--
a ay as /y a y~R) az u

which, on expansion and simplification, yield.

c curl A = + (Vi) •-Tr j (5.11-17)

.a 9
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Finally

caA V 8n 1 aV V 3R

a Tt - rR ~i- ; a tii- at-R

whence

c A v 'V.R V2 V V V.R V
- =t -- c---- + -rcR + .r(5.11-18)

5.11c The E and B fields of a moving point source

Consider the vector point functions defined by

grad#-1 -- (5.11-19)
c at

- curl 1 (5.11-20)

From equations (5.11-13) and (5.11-18) we find that

V __ + c2V2 (5.11-21)
a mc ,= R +(R c)a c,

and from equation (5.11-17)

( !,, +2-V2) (5.11-22)
a7 a cR3

It is evident that

R ! (5.11-23)

so that I is perpendicular to E and to the retarded radius vector.

Important relationships subsist between the I and I fields deriving from
one or more point sources.

It follows directly from their definitions and the principle of
superposition that

curl - t (5.11-24)

div i = 0 (5.11-25)
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It may also be shown7 by differentiation of equations (5.11-21) and
(5.11-22) that

div E - 0 (5.11-26)

curl B - '3- (5.11-27)

By combining equations (5.11-16) and (5.11-24/27) we easily find that

dal d dal alE - delB - 0 (5.11-28)

Fig. 5.4

In Fig. 5.4 P represents the retarded position of a point source
corresponding to evaluation at 0 at some particular instant. Q is the
actual position of the source at that instant. It is apparent that Q
must lie within the spherical surface centred upon P and passing through

0 since PQ 5 ! V < R (the maximum source velocity during the
c max

retardation period being less than c.) If, for a particular position of
P, we reduce R continuously (and alter the instant of evaluation at 0
accordingly) Q approaches P continuously. Since the various expressions
derived above are clearly valid outside the spherical surface they must
likewise subsist outside an arbitrarily small sphere centred upon Q ie
the expressions hold everywhere beyond the instantaneous position of the
source.

7. See Ex.5-51. and 5-52., p. 487.



Sec.5.11) RETARDED POTENTIAL THEORY 483

At sufficiently great distance from the retarded source, is in the

so-called 'far zone', only those components of I and B which are
associated with acceleration survive; these fall off as the first power
of distance while the remainder fall off as the square. In this case it
is easily shown from equation (5.11-21) that

KI (1-V2 IC2)
a - (5.11-29)

ERR

whence we see that -j--R0 as lm, ie E becomes transverse to the retarded

radius. It then follovs from equation (5.11-23) that K, B and R are
mutually perpendicular in the far zone and that E - B.

When the motion of the source is uniform over any period which exceeds
the retardation time

V - 0 and R- R - r
C

where r is the radius vector directed from the instantaneous position of
the source to the point of evaluation.

Then

K (1-v
2/c2 )

a r r R (5.11-30)

and, since V x R - V x r,

(vxr) (1-v 2 /c 2 ) (5.11-31)
a MICR3

where V now replaces V.

These expressions may be transformed (Ex.5-40., p. 484) into

S- r (1-v 2 /c 25 (5.11-32)

a cr
3  1 _ gsin2 63/2

where e is the angle between and

I.
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We have also

c (5.11-34)C

It is seen that the E field is directed radially away from the
instantaneous source position and is of an inverse-square nature.
However, it is not spherically symmetrical and the asymmetry increases
with increase of v.

EXERCISES

5-37. Verify equations (5.11-17) and (5.11-18).

5-38. Show that the far E field can be expressed in the form

i ~~ L..,F

5-39. In terms of the current notation R.P. Feynman has given the following

elegant expression for E.

a c d 7) cdt R

Show by expansion that this is identical with equation (5.11-21), but
note that the last term expands into nine terms of which only three fall
off inversely as retarded distance; all other terms of the expression
fall off as the square.

5-40. If Fig. 5.4 is restricted to a source moving with uniform velocity v,
Smobserve that

OP - R - RvR/c + r cos/POQ

and proceed to prove equation (5.11-32) by substitution in (5.11-30).

5-41. Evaluate the surface integral of equation (5.11-32) over a spherical
surface centred upon the instantaneous position of the source, and
extrapolate the result via equation (5.11-26) to any simple surface
which encloses the source.

Hint: Change the variable 0 to x - cos 6 and tote that

f~~~ dx•

f b4.x)I2 b2(b2+x2)i

Ans: 4wa
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5-42. In Fig. 5.4 P represents the common retarded position of the source for
evaluation at each element of the spherical surface shown, so that

I.CS may be determined for that surface by integration of (5.11-21)

with R, V and V constant. Show first that for V - -, •E.dX 4va and

hence confirm the result of the previous exercise.

Then show that for V * 0 the additional contribution to the surface
integral is zero - it is not necessary to evaluate the integral for this
purpose - and complete the generalisation by means of
equation (5.11-26).

5-43. Make use of equations (2.6-6), (2.6-7), (5.11-32) and (5.11-33) to
confirm that in the case of a uniformly moving source

div E - 0

and

"v2 !/2

- Iav con 0( Y 2 6

(curl B) V 2 2

r cat/ r Cr3  1 - -ssn2e ' 2

c~~~~ /a) r7 2 i ý

5-44. A regular surface S encloses a point source which moves in any manner
(v<c).

Show that

fB d-S - 0
S

5-45. A point source has motion of translation with a velocity V and

acceleration V at the time t'. The far E field is evaluated at 0 at the

time t' + R vhere R is directed from the source to 0 and makes an angle

with V. Show that for a given acceleration and for I< 1 the

magnitude of i Is proportional to sin e and independent of V, but that

In the limit as Y .1 the magnitude is a mi-ximum when e ji -1 ~
radians and is then proportional to I - )

C)
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5-46. A point source of strength a moves in a circle of radius r with angular
velocity W. At the time t the radius vector drawn from the centre ofo

the circle to the source is normal to the vector R drawn from the source
to a distant point 0 in the plane of the circle and defines a direction
A
s from which the swept angle 8 is measured, the positive sense of w

being defined by r x R.

Show that when 0 recedes to infinity

-A 2 - cose)

-~ Cos 6)3

hr t d rsin

where t - t + + r c , d being the distance of 0 from the
0 W c c

centre of the circle.

5-47. For the conditions stated in Ex.5-46. plot E0 (t) against 0 over the

range 0 - 0 to 0 - 2w for y - 0.1, 0.5 and 0.9. In each case
c V sin8 e

superimpose the plot of E0 (t) against e ( - -iwithout change of

scale. The latter curves represent E (t) as a function of t with e - 0

and e - 2w corresponding respectively to t - t + d and t + +2_.0 C 0 C

E0 (t) is clearly periodic in time with a period equal to that of the

source motion.

Observe that the functional forms of both E (t) and t conspire to

produce a 'pulse'-type waveform for the larger values of Y, comprising a

short-duration crest and long-duration shallow trough having vastly
accentuated characteristics as V approaches c.

5-48. We may define the pulse length of the waveform discussed in the previous

exercise as the time interval at 0 between zero values of E taken
symmetrically about the crest. Show that this time interval approaches
S/2 y 3/2 as y

Show further that the time average of E0 for all Y < I is given by0 c
2W V 2dA C os s iAn2

1 V -- cosO 2

de 0Foe~ dO - 2w crd Li ,)

5-49. In Ex.5-46. to 5-48. attention has been confined to the inverse distance

component of I. Now derive limiting expressions for the inverse square

components of I for a single source as d-, and show that the time
average of the transverse field is zero while that of the radial field
is equal to a/d 2 .
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5-50. When the single source of the above exercises is replaced by a system of
equal sources uniformly spaced around the circle and having a coumon
angular velocity, the inverse distance and inverse square transverse

components of E0 at great distance reduce to zero in the limit as the

number of sources approaches infinity while the total source strength
remains fixed. Prove this by demonstrating that the sum of the
contributions from all sources at a given instant is proportional to the

time integral of E0" as derived above for a single source, over the

period of a cycle.

5-51. Prove equation (5.11-26) by differentiation of (5.11-21), in accordance
with the identities developed in Sec. 5.11a.

(NB This procedure involves a considerable amount of 'algebraic crank-
turning'.)

5-52. Prove equation (5.11-27) in the following way:

Show first that

dal A - dal $ V - V dal 0 + 0 dal V + 2 L# LV _ 2 ? a-
T ax ax c act T

and combine equations (5.11-16), (5.11-19) and (5.11-26) to show that
dal * - 0.

Expand the remaining terms of dal A in accordance with Sec. 5.11a and
show that their sum is zero.

Then make use of equations (5.11-16), (5.11-19) and (5.11-20) to derive
(5.11-27).

5.12 Approximations for the Li6nard-Wiechert Potentials and Their Derivatives

in Terms of Unretarded Quantities
8

5.12a Transformation of the potentials

The point P1 of Fig. 5.5 represents the retarded position of a source
corresponding to some particular time of evaluation at 0, and P2 is its
instantaneous or unretarded position ie the position actually occupied by
the source at the moment of evaluation.

8. Based on O'Iehilly's exposition of Ritz.
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0 (xoyozo)

P1

(Xlyiz1 )

P2
(X2y 2 Z2)

Fig. 5.5

The coordinates of 0 are taken to be (xoyoz) while those of P1 and P2

are (xl,yl,z1 ) and (x 2 ,Y2 ,z 2 ) respectively.

Then

R2 (xo-Xl)2 and r 2  
- (xo-x 2 )

2

where R and r are the retarded and instantaneous distances of the source
from 0.

Now

X 1 -X2 + vX + 1 f , ( "2 ..

where v and fx are the x components of velocity and acceleration at P2,

since -xis the delay time between P1 and P2,

hence

x° x 1 - o - x2 + ! v - f- ...R
- x-2cT •x...
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and

O -22 R I R 2

cx o-2+ývx yf ......

2-1R 4( (o2)2+ IL v2 + i R4 f 22 f("x

0 C2 2x + • f ... +2(xo-X2) -X o-X2) C2

or

R2 r2+ R2 v 2 .. + 2r v - r f (5.12-1)
J2=r 2 " r - c 2  r......

where v and f are the radial components of instantaneous velocity andr r

acceleration directed towards 0.9

We now suppose that the motion of the source is such that all terms in
I I
c--, -j ... may be ignored. Then

R2ý 2- + 1 -f 2 rv R - r2 - 0
22 - + r) c

On solving the quadratic equation for R and expanding in binomial form we
obtain

v v 2  rf\
R - r + r1+ 12 + r - r (5.12-2)

But if

R - 1+ y then - (I+y)- . 1 - y + (2 ....

hence

v V 2 V2  rf
r - R +- -- + + --- r .... (5.12-3)

We now proceed to express VR in terms of instantaneous quantities.

Since

(x -
1R R x

9. In this Section, as in the latter part of Sec. 5.11, we take to be
directed towards 0.

i 1.
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and

V 
+ R

VX Xv -4- -C/x x

= R (o-x2+ f .Vx-"" .) "... )

whence

m V2 rRf

vc R c c+ R- cj .....

and on substituting for ! in accordance with equation (5.12-3)

V 2 V 2  rf-o -+ _ -2 .....
C C C2

Then

(- I +.
c ~ c

o V 
v 2 rf

-- t+ r+ _ r (5.12-4)

On combining equations (5.12-3) and (5.12-4) we obtain

a a vR VZv r 2 rf r v r V2fr\

R(1 V•) -

or

2  v 2 rf \

where * is the Liinard-Wiechert scalar potentlal.

The x component of the vector potential is

aV
xoV
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Now

V - ....

where

- df
g dt

hence

A -aK2 _ 2  rf R 1R2g
cr 2c2 -2c2 - 2C2 "c 2 x

whence from equation (5.12-2)

(v rfxv v 2 
v v 2

rvxf rrvrf xr 2 g x(.26cy-'•Y - 2c-' - •-c-'- + 2,-A - 2 . (5.12-6)

or

a 'T+ ; -_ _ - - r + r-+- . (5.12-7)

5.12b Derivatives of the transformed potentials

From equation (5.12-5) we have

v 2 rf 2v 2 rf

o2 0

Now - 0 since v is independent of the position of 0.
ax

0

Also

av r aD' v r Er' r•x
avr-B~ T-~ 3
0O x0, 0 0

or

av v v
a r r x r _r coo (rx)
B0 r r

0I
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Similarly

af f f
x r x r cos (rx)

0

Substitution then yields

Cj -cos (rx) ( v2 3 Vr 2 Vxvr 1

a ax ( + i2 -2•c7 - r_ 2cr (fx-fr cos (rx))

whence

grad* v r 2)2 3 r r - 'f 5.28( 1 2 c2  c2r2  ir

In like fashion we obtain

ca -t " rV + • to the order -• (5.12-9)

ca at 'c~r 2  crC

hence from equation (5.11-19)

r ( + v2 - 3v 2- r - (5.12-10)
2c2ac 2c r ......

On differentiating equation (5.12-7) we find that to the order 1•

3 aAz co Jrvz v2v 3v 2v r2gz rvzfr rvrfzj

ay r22T c 2 2c3 ~J'
fVr v ' v v f + v f

4 whence we may proceed to obtain

I ~~3 ~ 2 3 2  rf -B - (v,' (r+ 3 r _ (rxf)+ _
a cr3 r ( 2C 2

2c
2  

- 2c
2  

+ c3r2 vr 2c
3

r (fxv + rxg)

(5.12-11)

It should be noted that the approximation

a 1(xi) ( 5 .12-11(a))

is correct to the order
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EXERCISES

5-53. Show that

ar S m-V
at r

avt (v) f -M + -r- (cf Ex.1-L8., p. 22)

___ Vrf•
-frV r - r r

at (fr) r

and confirm the expansion

v f 3 2  3v 2  3rf -I a-- --r •• r r 3v'f __

Then show by differentiating equation (5.12-6) that, to the degree of
approximation involved,

div -
c at

5-54. Derive equation (5.12-11) from (5.12-10) by expanding • in terms of
- R R

and employing the general relationship B 1 E

(The discrepancy in the term in g is due to the omission of the
corresponding term in equation (5.12-10)]

Ana: ....

5.13 The Retarded Potentials of an Oscillating Point Doublet with Time-
Dependent Orientation

Consider point sources of strength ±a and spacing 2d sin wt centred upon
a fixed point S (Fig. 5.6). The sources coincide with P' and Q' at the

time to - !, where R is the distance of S from the point of evaluation,

0; the line of the sources, at this instant, is rotating about S with

angular velocity i.

I
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Q

0

Fig. 5.6

P and Q will represent the retarded positions of -a and +a, respectively,
for evaluation at 0 at the time t if the sources occupy these positions

RQ
at the times t -- !-nd t -_ where R. OP and Ro-0Q.

Now

SQ -(SQ + Q'Q

a- d sin w\to - z+ s At wd cos w o +(GsAdsi o +

\ (5. 13-1)A

where s is a unit vector directed from P' to Q' and

At 0 to -"- - (to a -"-
c oc C

The remaining terms of equation (5.13-1) involve higher powers of
(R-RQ)Qc. Since (R-R Q) is of the sane order of magnitude as d, a

restriction of the working to the first power of d reduces (5.13-I) to

SQ a d sin w o (5.13-1(a))
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and this, in conjunction with

RQ2  - R + SQ2 - 2R.SQ

yields

__A

+ d s w (5.13-2)
RQ R R (i o \O

The radial component of the velocity of +a at Q is given to the same
order by

VQ.Q A -3
RQ o +!(I; d sin wt- (5.13-3

which, in conjunctioo with equation (5.13-2), leads to

{RQ (I 
(5.13-4)

SA A-

;1 L + ;r d sin wa + cR - i cos w tox cR si o
L in (t c)+ TR (t C cR (

Similarly

(5.13-5)

AA A
W. a 0^J

• I- d i w - -"R- wd cos C) - to
- !t d( i (t 0 C) - (todsin wtBjR no cR

Then

(t - -a tup (I - +a Q (I

(5.13-6)

9 a 2adsiwt - ac cos wut )+ 2 (ls 2ad sin t-B)

In the limit as d0O and a- in such a way as to maintain ad constant, the
suppressed higher-order terms vanish and equation (5.13-6) becomes an
accurate representation of the doublet scalar potential.
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Since

(p) a " 2 ad sin w - (5.13-7)t - -R0t
\OC

oc

and

(d) - s2adw cos w - + (fxj) 2 ad sin w t - (5.13-8)
dt R t ) t

oc

we have

- ~T(P)~ +cR2 dp-'
tc C--
oC t ---Oc

or, in general,

_R1. (j,~ + (5.13-9)
"R cp.a R1 ý ! -dtj

(].grad - (5.13-9(a))

where r is directed away from the point of evaluation.

It will be observed that equation (5.13-9(a)) is identical with
(5.5-7(a)) which obtains for a point doublet comprising stationary
sources whose magnitudes are supposed to vary with time. In the present
instance the second term in the expression for # is a direct consequencevR
of the presence of the factor I --- in the Lienard formula.

c

In the same way we find that the vector potential of the doublet is given
by

A 0(t0 ) - 2swdcos w(t - C) + ( xs) d sin W -

cR \dt/
too c
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whence, in general,

L] dt " cr ] (5.13-10)
Although equations (5.13-9) and (5.13-10) have been derived on thesupposition that the scalar doublet moment p varies sinusoidally withtime, it is clear that the expressions will remain valid for any form ofsmooth periodic variation, and for the case in which p is tine-Invariant.

5.14 The Retarded Potentials of a Point Whirl of Constant Moment
In Fig. 5.7 a point source of strength a revolves in a circle of radius Pabout a fixed point S with constant angular velocity w.

0

Rk

Q PO P

Fig. 5.7
If P is the retarded position of the source corresponding to evaluationat 0 at the time to, the source must occupy this position at the time
t - . Suppose that the source is located at P at the time to - c
that LP0 SQ - o where Q is the end point of the normal drawn from 0 to
the plane of the circle. Then

+5.14-1

We have also

Qp2  
d 2 + p2  2pd coo

i
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and

R12  - h 2 + d 2 + 0 2 - 2Pd cos* - R2 + 0 2 - 2Pd cos*

hence

R' - R _ 2sin cos 0 +-(I RR

A binomial expansion then yields

2 2 2
R- R' - P sin 8 cos * - 2 + sin2e + L2 sin2e cos 2* +2R 4R 4R

On expanding sin 4 and cos 4 as expressed in equation (5.14-1) and
treating (R-R') as a small quantity, for reasons which will become
evident later, we obtain

02( 2p 2 0 2 p2
2cý + sin 2+0 sin

R-R' - p sin e cos Vo- RL sin2e sin 2o- _+ sin2e + ! cos 24+...

(5.14-2)

where the remaining terms involve higher powers of 0, whence

p2_2+ 1 p sin 0 cos4' - sin2 e sin20' RZ + sin2@

R' L~ R 0 2cR o 2R 4R

(5.14-3)

+ . sin2 e cos 2*0 +

to the same order.

Let the unit vectors ± and k of a right-handed set be aligned with SQ and

w respectively. Then the source velocity at P is given by

S= -iPW sin + PW cos *

Since

' -icos - P sin + T d + k h

V.i' - -0Pwd sin

Expansion in accordance with equations (5.14-1) to (5.14-3) yields

V.R' sin 9 •sin o+ k- sin 8 + - sin 0 Cos 24 + 0sinS sin 24 +
o-V22 -- o 2R
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whence

v 2 2  
£2+-- I rsn8 n *o- • sin2 e cos 2* -2c R 2 sin 2 +

P-wsie sn 0 C7 in- sin6 icc c-0 2cRo

(5.14-4)

and

R'(1 -I 1+Esinecos.2-.-sinsin -17
1  / R~ R 0 c 0 I 2R 4R

(5.14-5)
32222-2

+ R" sin2 e cos 2* 3P2- sin2 8 sin 2*0- k sin 26 cos 20
4Ro 2cR o o) 7 in-

correct to the second power of p.

Now

V - -Pw sin*
x

w sin 'o+ P sin e + 1- sin 2 co*2° +
L 0O si c- 2c0

whence

aV(A - x -ap sin* + sin8sin2* +!sin 8cos2*

to ( •"v" cR o 0 R 2 Rt0 cR' -C /

(5.14-6)

to the order P2.

Similarly,

( -w
Vy oP (coso -0 sinesin 2*0

and

aV
c(A ) Cos +- sin e+•sin 8cos 20 sin m sin 2*tov cRRIYt(R' ) 'R R 02R 0jsf 2*0an

(5.14-7)

A
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We now generate a point whirl by requiring that p-0 and a- in such a way
as to maintain ap2 constant, and we define the vector moment of the whirl
by

- apz -- - 2C (5.14-8)

Since terms of order higher than P2 vanish under these conditions, the
components of the vector potential at 0 are given accurately by (5.14-6)

10
and (5.14-7) . It is easily seen that to obtain the values of A and Ax y
corresponding to the time t at 0 we must substitute w(t-to) + 40 for *0

in these expressions, whence it follows that the average values of A and
2w X

Ay, when taken over any interval of duration-,&", are respectively zero

and -",c sin 8, ie2cR•

A(average) - 0 + J m R-- + k 0

-- R

or

A(average) - a ' grad - (5.14-9)r

where r is distance measured from 0.

Reference to Sec. 4.12a reveals that the vector potential of a time-
invariant continuous circular whirl is c times the average vector
potential of the point whirl (provided that the sense of circulation is
the same in each case) when

TP2I 1 22 or I at_ a
2 2w T

where T is the period of revolution.

Since the average value of A is independent of the time of initiation of
the associated integration cycle, it is clear that the equivalence
continues to hold for a set of point sources distributed around the
circle if we put

10. The first terms of these expressions (which become infinite in the
limiting process) will be eliminated subsequently.



Sac.5.15] RETARDED POTENTIAL THEORY 501

a1  a 2l - .... 
(5.14-10)

ie if I is made equal to the total source strength passing a given point

of the circle in unit time, averaged over the composite period.

In view of the limiting requirement, a-, the scalar potential, viz

a

becomes infinite at 0. To render this finite we may place at the centre
11

of the circle a point source of equal magnitude and opposite sign . It
then follows from equation (5.14-5) that in the limit

a _2 3 2 2
#(average) = - L2R + 4R2 sin20 6 (1-3 cos

2
9) (5.14-11)

It will be seen from the considerations of Sec. 4.1 that (5.14-11) is
2

identical with the potential of a static axial quadrupole of moment 2
placed at the centre of the circle and aligned with its axis.

A considerable simplification is introduced by supposing that three or

more point sources are disposed symmetrically around the circle with

comon angular velocity. Of the additional terms introduced by this

means into equations (5.14-6) and (5.14-7) those which involve phase
angle cancel out in the sum, so that, if a now refers to total

circulatory source strength, equations (5.14-9) and (5.14-11) describe

the instantaneous values of A and #. The potentials are then seen to be
time-invariant.

5.15 The Retarded Vector Potential of a Point Whirl of Time-Dependent
Orientation

Fig. 5.8 depicts the orbital plane of a point source at the time t0 -

OQ is normal to this plane, as in Fig. 5.7, and the unit axes are defined
in the same way. The source occupies the position Po. where LPoSQ - 0.

11. However, see p. 512.



502 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.15

0

h

pf

Fig. 5.8

It is supposed that the orbital plane is tilting about the y axis with
angular velocity 0, and that P is the retarded position of the source
corresponding to evaluation of the potential at 0 at the time t o Hence

S + (R-R') (5.15-1)0 c

and

p, (R-R'_. ) cos V + ... (5.15-2)
c

From geometrical considerations

R' 2  - R2 + p 2 -2pd cos + 2 phfl (-') cos • + p22 (R c02 +..

whence

R -R' - 0 sin e cosa + .... (5.15-3)

and

1 - + Esin e coso +. "" (5.15-4)
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The components of the source velocity at P are given to the second power
of p by

V - -p sin p-0( 2  R '_ Cos * +
x c

- pw sin *o + LE sin e +2-c sin 6 cos 2*o (5.15-5)

-2 sin 6 - - a sin 0 cos 2*

v . pu cos * +....y

= P• icoso -'sin 6 sin 2*° (5.15-6)
c C -

Vz - - PQ Cos *+p PW (R-R' sin * +

- - PQ cos * + p2._ s 6n e sin 20 (5.15-7)

On combining equations (5.15-5) to (5.15-7) with

' - p cos 3P - Jp sin * + Id + iih + 14U (R-R'_) cos * +c

we find that to the first power of p

'.R" - -(dpw sin V. + hPfl cos

whence, to the same order,

I - - I - ±.. sin e sin *0 8 Ell cos Co (5.15-8)

- c c 0

and

( U
oR' 1- I: + L sin 8 cos o sin sin o - cos 0 cos

Ic 1 )I c R0-cw
(5.15-9)

If, now, we postulate a symmetrical source system of total circulatory
strength a, the combination of equation (5.15-9) with the velocity
components yields in the limit

(A ) - sin e (5.15-10)
x t 2c R0
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22
(A)t 2 sin e - 4cR Cos 8 (5.15-11)

yAzt 2c sn a2c2rR

(A - sl + ac2 co (5.15-12)

0 c 2c RCS

It will be observed that the magnitudes of the various components of

(A)t are such that as 9/ui+O, (A)t +J(Ay )t B ut

[ 2] = and ia d• =

2Lt2c [d 2-t= 2c

so that we then have

(A~ + m] R + tdmx cR2 51-3

On carrying out a similar analysis for tilt about the x axis we obtain

7-2

(A -a Cos s (5.15-14)
(Ax)t " 2cTRa

Ay t° 2c•R• l (5.15-15)

(Az) + 2c sin 8 (5.15-16)

In this case

dt -j 2c

hence

R T 2y1 -Cos 0+ 2,g sine0

and

( 0 X (5.15-17)



Sec.5.15] RETARDED POTENTIAL THEORY 505

It follows that for tilt about any axis perpendicular to w, and with
Q/w0O, we have the general result

x _grad Xr (5.15-18)S= [] x ra It - r2

This result is applicable to a variety of source systems. It holds for a
symmetrical point whirl of fixed orientation and variable moment
(Ex.5-57., p. 506), for a continuous whirl of the same type (See
Sec. 5.5), and for a continuous whirl of time-dependent orientation
(Ex.5-62., p. 508).

The derivation of the scalar potential of a symmetrical point whirl of
time-dependent orientation is the subject of Ex.5-61., p. 507. It is
there required to show that in the presence of an equal and opposite
central source

+ ! [ t] a (1-3 cos28 (5.15-19)

This is a generalisation of equation (5.14-11), and is closely related to
the potentials of both a uniform scalar line source which shrinks about a
central compensating source and of an axial quadrupole of appropriate
orientation (Ex.5-63. and 5-64., p. 508).

It will be observed that, on occasion, the magnitude of a stationary
point source has been postulated to be a function of time. This time-
dependence has not been extended to moving point sources because the
derivation of the Li~nard-Wiechert potentials presupposes the invariance
in time of the parent volume distributions.

It will not have escaped the notice of the reader that the retarded
scalar potential of a point doublet, as expressed by equation (5.13-9),
may be written in the form

Hence, provided that the rate of change of p is constant over the
retardation interval R/c, we have

from which we see that the retarded and unretarded potentials are
identical. In like circumstance equation (5.15-17) reduces to

.R3
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and it is easily shown, by reworking Sec. 5.15 without retardation and
Liinard modification, that this expression represents the unretarded
vector potential of the point whirl. The same behaviour is exhibited by

12
the scalar potential

When the rate of change of the relevant variable is not constant in time
the unretarded potential will continue to approximate the retarded
potential provided that the second time derivative is continuous over the
retardation interval and R is sufficiently small. For sinusoidal

.w2 R2

variation of p or m the required correction is of the order c---, where w

now denotes the angular velocity of the source moment. However, for
non-zero values of w, the approximation must inevitably fail at
sufficient distance from the source.

EXERCISES

5-55. Show from first principles that equations (5.13-9(a)) and (5.13-10)
continue to hold when the doublet moment is an arbitrary function of
time with continuous derivatives.

5-56. Confirm that the presence of three or more symmetrically disposed
sources eliminates those terms involving phase angle from the various
limiting expressions for the components of potential in Secs. 5.14 and
5.15.

5-57. Show that equation (5.15-18) holds not only for a symmetrical point
whirl of variable orientation but also for a whirl of fixed orientation
and variable moment, where the variation of moment is due to

(1) time-dependence of angular velocity of the sources

(2) time-dependence of the orbital radius (provided that the
fluctuation of the orbital radius is sufficiently small and its
associated period sufficiently large).

5-58. Confirm equations (5.15-14) to (5.15-16).

5-59. It has been shown in Sec. 5.11a that the time interval At at the point
of evaluation of the retarded potential corresponding to the time

interval At' at the source is given by At - At' ( - R It follows

that if * and A are the scalar and vector potentials of the source
system of Fig. 5.7, as evaluated at 0,

a
odt - e dt - -I- dt'

12. This behaviour does not extend to the vector potential of a point
doublet.
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idt = a- dt - a dt'

cR'

Duplicate the results of Sec. 5.14 for a single-point whirl with a
central compensating source by evaluating

t 2 4 t I + 2,,

A- dt' and I dt'

at the source, where tj is an arbitrarily chosen point of time, and
consequently showing that

2w.. f R dt 4Rg2dt 47 (1-3 cos2e)

t i + R -I

c

and

tj + L +2 tj +!I+ 2,

c 0)c w

A f &t - a A fydt si-2-• x 2-1 r 2cR•

ftj + RI tj + R

c c

where RI is the distance of the source from 0 at the time ti.

5-60. In equation (5.12-7) the retarded vector potential of a moving point
source is expressed in terms of the instantaneous distance of the
source from the point of evaluation, together with time derivatives of
that distance. Obtain (5.14-9) by applying (5.12-7) to a symmetrical
point whirl, and observe that the term involving rate of change of
acceleration must be included in the working.

5-61. A symmetrical point whirl of time-dependent orientation is supplied
with a central compensating source. Show, in the notation of Fig. 5.8,
that the scalar potential at 0 at the time t is given by the limiting
value of 0

[5 +4 - j~k7 (1-3 cos28

provided that 0 < c

kR

.I,
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5-62. Let the instantaneous orbit of the revolving point source of Fig. 5.8
be identified with a uniform tangential line source of time-invariant

density I. If the vector potential of such a source is defined, for
present purposes, by the general retarded expression

where V is the velocity of the element da, show that the vector
potential at 0 at the time to is given by

RR

where

A Lim WP21 Lim -'

c c

5-63. A uniform scalar line source of strength a coincides with the circular
orbit of Fig. 5.8 and shares its motion. A point source of equal and
opposite strength is located centrally. If aP2 is maintained finite
during the limiting process and is time-invariant, show that the
potential at 0 at the time t is given by

o

[~i.~~j ~i(-3 cos2e)

4R
provided that f0 <1c .c

Prove that the same expression holds when the contour is fixed in
position and the source strength varies sinusoldally in time with

frequency f, proved that f 2 << 4w-2 "

5-64. An axial quadrupole comprising the limiting configuration of stationary
sources of time-dependent magnitude is located at the origin of
spherical coordinates and aligned with tho z axis, the inner sources
being of positive sign. Show from equation (5.5-7(a)) that the
retarded scalar potential at (R,O,*) is given by

Id (n2)i 2 1 f() o 2
1 + (1-3 corse)- L 2J 2j
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5.16 The ! and I Fields of Time-Dependent Doublets and Whirls

5.16a The time-dependeot point doublet

The retarded scalar and vector potentials of a point doublet of time-
dependent moment, as derived in Sec. 5.13, are

S c_ d.@ I d 1_
* [(p].grad t - . r

The gradient of # at an exterior point 0 (xoyoz ) is consequently given
by

grad* -P Z-r- - _=n l1 +cy t

Routine expansion yields

Z 1 -p 3(x-x 3(x-x)grad 4 - r Ip + cr dt c rL r- - r •-•

(-°cr c- 'idt

whence

E = 1 + 3 JL

(5.16-1)

It will be observed that the time-dependence of p gives rise to terms
which

(1) fall off as the square of distance and are proportional tomp

(2) fall off as the sars oe r of distance and are proportional to

(2) fall off as the first power of distance and are proportional to

The latter terms may be combined in the form

r dt (5.16-2)

This component is normal to the radius vector and lies in the plane

defined by [ jand r. Thus for non-zero values of the E field

becomes transverse at great distance from the source, as would be
expected from the considerations of Sec. 5.11b.
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We have also

B=curil _L L d( tv-

- [ Z + (L 2 Idtl L0 i Ljr3 Ldtj- cr2 Ldt2_ + r3 Ld2 +it cr1

whence

cr Ld= Cxr [_d 4t]-~ (5.16-3)

From equation (5.16-1)

Rx E " - (rxE) - x[ + x t+

hence

A

I ~ r PIII ~~ ~ (5.16-4)

It is evident that the general relationship derived for a moving (or
stationary) point source, viz B - R x E may fail at close range for
multiple sources. However, the relationship is re-established when the

distance from the doublet is such as to render the inverse-cube component

of V negligible.

Since the potentials of the component singlet sources add linearly we

conclude from equation (5.11-28) that the d'Alembertians of #, I, R and I
are zero beyond the doublet, and that equations (5.11-24/27) continue to
hold.

5.16b The time-dependent symmetrical point whirl

It was shown in Sec. 5.15 that the vector potential of a time-dependent
symmetrical point whirl is given by

[M- x grad d - - r

We may deriva I - curl 1 by direct differentiation of this expression or
by proceeding in the following way.
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It is easily shown that

grad r-" - . -j div (5.16-5)

and

[ii x grad - F x r curl (5.16-6)

Hence

B -curl curl i =grad div A;1 V2 A1
(5.16-7)

= - grad [i].grad - V-2i" - D V

The first term of the above expression has been evaluated in the previous

sub-section with m replaced by p; it therefore remains to evaluate

V2 (12).
Now

V( CT-) V2(--

but it follows from equation (5.7-4) that dal -•J'xJ) 0

hence

V 2  [;f\ 1 d2  j~) _ 1 d(5.16-8)

r) J dt (r) .2r ýt

We then find that

--r .(i i r ~]-~ [d2ja I Fd2j_
-r cr2 L-- d cddtA - dr Ld- - T2 -cr L -

(5.16-9)

This expression is formally identical with that for the E field of the

point doublet (a replacing p) and consequently exhibits the same
asymptotic behaviour.
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The component of E deriving from the vector potential is given by

- c T x grad _- 1h (5.16-10)

It is seen from equation (5.16-3) that this is formally identical with

the negative B field of the doublet.

The remaining component of F is represented by -grad *. This may be
shown to comprise terms which fall off as the second, third and fourth

power of distance. Such additions to E upset the symmetry displayed by

the i/B relationship for doublets and whirls as they stand above, and
complicate subsequent analyses. For this reason we now postulate a
system of compensating sources for each whirl which, unlike the central
source, reduces the scalar potential to zero at all exterior points.
Reference to equation (5.14-5) reveals that this may be effected by the
addition of a symmetrically-disposed set of identical orbital sources of
such magnitude and sign as will reduce the aggregate source strength to
zero. The vector potential of the primary sources is unaffected if the
compensatory sources are stationary. Accordingly, equation (5.16-10) is
now replaced by

- - •grad t- x (5.16-10(a))

As in the case of the point doublet, equations (5.11-24) to (5.11-28)
continue to apply beyond the source.

EXERCISES

5-65. Prove equations (5.16-5) and (5.16-6).

Show that the E field of a point doublet may be expressed as

E - curl curl (-i)

5-66. Confirm equation (5.16-9) by direct differentiation of (5.15-18).

5-67. A point doublet of time-dependent magnitude and moment p - kp is located
at the origin of spherical coordinates. Show that at the point (R,O,f)

ER 2 cos e B0 + [0 t

I,- -c [ -
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B4 = ~ +~ sin e +~ ' dl

5-68. Use equation (2.6-7) to confirm that div E - div B - 0 in the previous
exercise.

5-69. A fully-compensated point whirl of time-dependent magnitude and moment

m- m is located at the origin of spherical coordinates. Show that at
the point (R,9,0)

BR=2 cos e m -1+ [d]

Be - sin { .I 7 e~ tF +

Bf - ER E- - 0

E0.- sin a T + - I d

5-70. A point doublet of constant magnitude p is located at the origin of

rectangular coordinates and has a constant angular velocity Ifl. At the

time t - 0 the doublet moment is jp. Determine 1(t) and B(t) at the
point (O,dO).

Ans: E - B B - 0
x y z

BE p cos e + Rin
z cdP

where

t(

.. .
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5-71. Determine the values of i(t) and i(t) for a point whirl in an analysis
parallel to that of the previous exercise.

Ans: B - E - E - 0x y z

By 2 - cd2 j

-sin 0 cos e•2 Q- -d
z d cdC U

5.17 The Retarded Densities and Potentials of a Statistically-Regular
Configuration of Point Singlets in Motion

The Equation of Continuity

The scalar density p, as employed in earlier sections, has for the most
part been treated as a piecewise continuous function which appears in its
own right in the integrand of the scalar potential function. However, in
Sec. 4.20, where the macroscopic potential of a statistically-regular
configuration of stationary point singlets was under consideration, it
was found convenient to derive a continuous density function from the
discrete values of source strength per unit volume for each of a set of
subregions into which the source complex was divided. We now extend such
considerations to an assemblage of moving point singlets. and endeavour
to define both scalar and vector density functions such that their
substitution in the standard integral expressions for retarded scalar and
vector potential yield values which are in sensible agreement with the
results of direct aut-ation of individual contributions, as expressed by
equations (5.10-14(a)) and (5.10-14(b)), at points outside the* distribution.

Fe- d -in.
I I./

source velocity V

Fig. 5.9a Configuration of sources at time t --

o c
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•,d/(1-V RI/c)--

reversed source
motion

0

Fig. 5.9b Configuration of individually retarded sources

Consider first a set of sources of equal magnitude a and fixed velocity

V. To determine the retarded positions of the sources corresponding to
evaluation of the potentials at the point 0 at the time t we reverse the0

motion of the sources at t , as discussed elsewhere, and allow a
0

spherical surface to expand about 0 with speed c. Suppose that this
surface cuts the end surface of a fixed subregion, or cell, AT1 , having

the form of a narrow prism whose axis is parallel to V (Fig. 5.9a), at a
time when the particular source a' lies in the end surface and the source
a" is a distance d in advance. Then from previous considerations it will
be evident that the spherical surface will overtake a" at a distance
d/(l-VR /c) from the end of the prism, where V is the radial component

of the velocity of the reversed source motion away from 0 (and therefore
of the actual motion in the direction of 0 at the retarded time). This
fractional increase of spacing between sources in their individually
retarded positions relative to the positions occupied at the instant
to-R1 /c, where R1 is the distance of the end face of the prism from 0, is

seen to apply to all sources initially withJn AT1 , irrespective of their
original spacing, so that the total source strength of the individually
retarded configuration within AT1 will be (1-V RI/c) times that of the

instantaneous configuration at the time t 0 -R 1 /c. If the latter source

strength has the value Nja, then the contribution of AT1 to the retarded
scalar potential at 0 at the time to will, in accordance with

equation (5.10-14(a)), be given approximately by

Nja(I-VR /c) N1 a

A9 = RI(.V RI/c) -RI

It is seen that the Lignard modification in the denominator of the
expression for potential is just cancelled by the reduction of source
strength in AT, due to movement.

A.
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The principle is illustrated in greater detail in Fig. 5.10 which depicts
the conditions obtaining in adjacent collinear cells when equally spaced
sources numbered 1 to 27 move radially with respect to the point of
evaluation with speed c/3, the reversed motion being directed towards the
left and away from 0.

In this case the instantaneous configuration has been shown for each cell
at the time at which the spherical surface reaches the cell centre. It
will be observed that for this progressive type of motion the ratio of
retarded to instantaneous source population within incompletely filled
boundary cells may differ from (1-V Rc). Since only boundary cells are

affected and since in practice these comprise only a very small fraction
of the total, the attendant error may be neglected. This difficulty does
not arise when the source system fully occupies a fixed region of space
at all times.

The potential at 0 of the complete source system may be approximated by

dividing all space into volume cells parallel to V, evaluating Na/AT in
turn at the appropriately retarded time, and generating a smooth point
function pt - R/c by interpolation between the values of Na/AT referred

o

to the cell centres (spot densities). Then

0 t - R/c

0o(to. 0 oR " a

or, in general,

S" f -!I d, (5.17-1)
T r

where R has been replaced by r because all volume elements are fixed in

space. The region T must include all subregions where [p] is non-zero.

The accuracy with which the integral formulation approaches that derived
from the summation of individual contributions depends, of course, upon
the degree of statistical regularity which prevails between adjacent
volume cells when their dimensions are reduced to values which are small
in relation to their distances from the point of evaluation.

The vector potential is given correspondingly by

" ]; dT (5.17-2)
T

where the velocity, being time-invariant, is represented in its

unretarded, lower-case form.

We may interpret (5.17-1) and (5.17-2) more generally as approximations
at exterior points of the potentials deriving from those particular
sources of a common-strength/mixed-veloc:ty ensemble whose velocities

have the given value v when overtaken by the expanding sphere, provided
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that the velocity of any individual source varies negligibly during the
transit interval of the surface across the associated volume element and
statistical regularity continues to prevail. It follows that if we

specify a complete set of velocities v1 , v2 .... and determine the
corresponding retarded density fields [pl], [P2] ...... , the potentials of
the ensemble become

* - f {[Pll+I[P] ..... d aT (5.17-3)
r

and

Q- [ P11v+[p2]V2.... ) dT (5.17-4)
T

While this approach requires that statistical regularity obtain for each
discrete velocity population, it is plausible to assume that the

expressions for * and A will continue to represent valid approximations
provided only that statistical regularity prevail within each of a set
of velocity 'siots' into which the velocity distribution may be divided,

and that V1 , V2 .... are indentified with the mean values of source
velocity within these 'slots'. When the ensemble comprises sources of
strengths al, a 2 ... the component distributions of common strength are
treated separately and the results summed.

Thus, in general,

Ifi (Z + d, J IA! dT (5.17-5)

1P {( vi~)a + (I[pi]-Vi)a dr (5.17-6)

If we write

L __ .... (5.77
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the vector potential assumes the familiar form of earlier treatments
13

(apart from the factor c)1, viz,

A[j dr (5.17-8)

The moving sources are said to constitute a volume current and J is known
as the current density. The current is said to be neutral when p = 0, in
which case the scalar potential is zero. This is possible only when
suorces of positive and negative magnitude are present in appropriate
numbers in each volume element. When all sources are of common sign p

can be nowhere zero but J may vanish everywhere, as in the case of a
configuration of common-magnitude sources with a random velocity
distribution in each element (see Ex.5-72., p. 523).

The scalar and vector potentials developed above not only approximate the
true or microscopic potentials (based upon (5.10-14/15) at exterior
points of an assemblage of singlets, but also serve to define the
macroscopic potentials at all points. Unlike the microscopic potentials
with their attendant singularities within the distribution, the
macroscopic potentials and their first space derivatives are continuous

everywhere, and higher-order derivatives exist where 0 and J are
continuous.

Similar analyses apply to surface and line distributions in motion upon
fixed surfaces and along fixed contours. Thus we may define the scalar
macroscopic surface and line densities by smooth interpolation between
spot values of areal and linear density, and so obtain

[ - r { [oi) + [si .... ds f - dS (5.17-9)

S 1a, a S

13.
In earlier Sections the symbols J, K and I were employed to denote
vectorial source densities when treated as underived quantities, and the
associated vector potentials were expressed in the basic form typified by

A - dT. This convention will be adhered to in later pages. However,

when J, K and I are employed to denote macroscopic current densities it is
necessary to import the constant c into the denominator of the vector

potential to permit of the subsequent expression of the macroscopic E and

Sfields, and of Maxwell's equations, in Gaussian form.

It should be noted that when K and Y are treated as primary quantities they
are not constrained to be orientated parallel to the associated surface or
contour; when denoting current density, they are so constrained.



520 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.17

and

. E [ [ ... (5.17-10)

r r

The corresponding vector potentials are

A - [ .... dS dS
S Sa a

(5.17-11)

and

Af v(,, ')a. [ 12 ...... d. E fU.. d
(5.17-12)

where K and I are known respectively as the densities of surface and line
currents.

An important relationship, known as the Equation of Continuity, subsists
between the macroscopic vector and scalar density functions. We may
proceed to develop this relationship by way of the following
considerations.

When a source system comprising unaccelerated singlets is divided into
equal-velocity sets, the unretarded macroscopic source density at any
point is that resulting from the superposition of an ensemble of time-
invariant scalar density fields which move as a whole with the
corresponding set velocities. However, when individual sources are
subject to acceleration there will be a transference of sources between
sets and the moving density fields will exhibit spatial variations in
time. We will proceed on the assumption that such variations are smooth.

Consider first a common-source-strength set having the velocity v1 and
spatial density distribution pl. It has been shown in Sec. 1.20 that for
any well-behaved scalar field having both spatial and temporal dependence
the rate of change of field strength at a point which moves with velocity

v is related to that at a fixed, coincident point by

d 3

dt t+ .
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On applying this to the density field p, and putting v - v 1 we get

dpl ap! -

dt . at + V1 -VP1

But

div plvl = p, div V, + VI.V1 . 1 - ;.V

since vj is a constant vector field,

hence

ap1  dp1
div Pjv1  -j• + d

The remaining velocity sets of equal source strength yield similar
equations so that

d -(0 -+2; . . a dpl dp2

"div - (o!+P2.... ) + d-+ d0--.. (5.17-13)

We now consider the source population enclosed by small spherical
surfaces of equal radii which are carried along by the moving fields and
are momentarily coincident. The strength of this population will
approximate (P1+02..) AT, provided that the volume AT of the spheres is
sufficiently large to accomodate a statistically-regular configuration
for each velocity. Since the same sources continue to be contained by
the spheres as they go their respective ways at the instant under
consideration, it is evident that the individual density fields must be
related at least approximately by

dp1  dp2
+ .. - 0 (5.17-14)dt dt

This appeal to the conservation of population, and therefore of source
strength, cannot establish equation (5.17-14) precisely, although it is
intuitively obvious that the finer the source structure, and the greater
the restraint thereby imposed in the smooth interpolation of the g
fields, the more nearly will (5.17-14) hold at interior points of the
source complex. We now postulate that the time and space smoothing
undertaken in the generation of the macroicopic scalar and vector density
functions is to be effected in such a way as to ensure that (5.17-14)
holds exactly. Then equation (5.17-13) reduces to

div (01;1+02;2....) * - a

S-I• o!o..
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Similar equations hold for each component of a mixed source strength
ensemble hence in general

div fzPivi)a atZ~;) } -- ~ ( ± +( I pi).. ......

or

div - (5.17-15)
at

This is the Equation of Continuity for a volume distribution of singlets.
The corresponding equations for surface and line distributions are

divs - _o (5.17-16)

at

and

3- 3A (5.17-17)

where

S= Is

It follows from the definition of J that the total source strength which
passes in unit time through an element of surface AS orientated normally

with respect to U in a region where J is continuous is approximately
equal to JAS, provided that the dimensions of AS are comparable with or
greater than those of the volume cells employed in the determination of
the parent scalar density functions. More generally, the rate of

transfer of source strength in the positive sense through AS is given by

J.n AS.

When the normal component of J is discontinuous through the surface
element, the rate of increase of source strength upon it is approximately

A
equal to -AJ.n AS, where AJ is the increment of J in the direction of the

1

arbitrarily-assigned common normal n. Hence

_A 3

-AJ.n AS - AS
at

where a is the macroscopic surface density deriving from the flow of
volume current. We now postulate that the time and space averaging of o
is to be such that at all interior points of any surface of discontinuity

of • there holds the exact relationship
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A 30
•Jn- -~at

Than in the presence of a continuous current i upon the surface of
discontinuity we have the general result

diva I + __ (5.17-18)dlsK + 8J.n at-•-

where a now includes both volume and surface current contributions.

The corresponding relationship for a line of discontinuity of a surface

current K which also carries a continuous current of density Y is

- A ax
+ AK.n' at (5.17-19)

where n' is tangential to the surface and normal to the line of
discontinuity.

Before proceeding further, attention should be directed towards the
anomalous nomenclature which surrounds the description of current flow.
By associating the terms 'density of a volume source' (or volume
density), 'density of a surface source' (or surface density) and 'density

of a line source' (or line density) with the symbols J K and I it has

been implied that current may be expressed in the forms / dT, f dS and

.ds. However, the term 'current', when standing alone, is

conventionally defined to be the rate of transfer of source strength
through a surface, or across a lize, or pat a point, and is consequently
a scalar quantity represented by / .dSg, F K.n' de and I.

Provided that the anomaly is borne in mind it should not cause any
confusion.

EXERCISES

5-72. Show that j may be defined by smooth interpolation between spot values
of

("'v )al + ('-v a) + +

where (W') AT is the total source strength within AT of sources of

individual strength aI and (O ) & is their mean velocity.

5-73. Prove equations (5.17-16) and (5.17-17).
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5.18 Consruuction of the Macroscopic Density and Potential Functions for
Singlet, Doublet and Whirl Distributions

It is clear from the considerations of Secs. 4.20 and 5.17 that the
manner in which the macroscopic density functions are constructed will
largely determine the accuracy with which the macroscopic and microscopic
potentials of statistically-regular distributions of discrete sources are
matched at exterior points. We now examine this aspect in greater detail
and extend considerations to configurations of stationary doublets and
whirls.

X0

Fig. 5.11

Consider first a distribution of singlets having the common velocity

V - V, and within this distribution an elementary cell AT taking the
form of a parallelepiped of edges X, Y, Z, aligned respectively with the
x, y, z axes of coordinates, and of such dimensions that statistical
continuity prevails between adjacent cells of comparable size. The cell
centre is P (Fig. 5.11) and the point of evaluation of potential is 0.

To maintain uniformity with previous notation we write

P• poRnt o r PQ - s

where Q is some point Of AT.
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In Sec. 5.17 the contribution of sources within AT to the retarded scalar

potential at 0 was written as M- ie - ai; we now sharpen the
R R zL

approximation by replacing a ai th

a' {ri(i +÷ )} with (9-)where s-u the contributions

of the singlets in their individually retarded positions complete with

Li6nard modification, while 7 sums the contributions at the instant
R without modification. This substitution presupposes that the

o c
variation of population due to movement in a subregion of AT just
balances the Liinard factor as it applies to that subregion, and that
the aggregate effect of the positional discrepancy at the time t - ! is

negligible when taken over the complete cell. Once this approximation

is accepted - and we will restrict V/c to values very small compared with
unity in order to assist it - our concern lies with the degree of

precision with which may be replaced by f Li] dT, where (P]

AT

is a continuous density function having a statistical basis for
evaluation.

Now from equation (1.2-9)

. -7- 1P) + L ((s.V)2 [P] + (5.18-1)

Qr \ P r r

hence

I ] d, - - A, + yV P]. a sdr

AT AT

1 2+ 2 a2 32 a2 32
+ ~ S2+2 2 -+2s a - +2ss a dT +.

x a, 3y- za-Zl x yaxy x z axz yZYZ rj
A-r

From symmetry,

AT
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The cross-terms of the second integral vanish likewise, leaving

[U]r TA -S [p A + 2 ["_'"

rk~ R 2 x (57 -r ) y (ýa y )+s r-j [ ý5ldr P
AT AT

[oPI •, 2x 1 ýa / -~ +• Z2 (;2.
. + L X 2 [) + y2 + (+

which, on expansion, becomes

f 'OP { 1 (2 RP2 +1" I2 1 P2 R2 )l- AT (1( R2 y2 (R2 Z2 ( _A

f r RR + 3j- +24 R -R2

AT

S- pX2R ( P]) + Y2R -(32p1) + -(5.18-2)

+ 24R + y2 (a2 () + z2

We now attempt to match (5.18-2) with the discrete summation A which
r ri

may be expanded in accordance with equation (4.1-17) as

a a + a .-- +. ... (5.18-3)

If we retain only zeroth and first order terms in s/R, the terms in X2

etc in the top line of (5.18-2) are deleted and (5.18-3) is truncated as
shown. A match may then be effected by putting

[PIp + L ýX2 (aEa y) + 12 (,2[2i) + Z2  
= a2 ai (5.18-4)

P -4 a P ] A

and

1�2 y2 (\) Z2  az /p5 - atsi (5.185)

While equation (5.18-4) can be satisfied, at least in principle, by an

initial choice of [p] L T, ai, as previously suggested, with som

subsequent process of successive approximation, the derivatives of [p],
as they appear in equation (5.18-5), are thereby preempted, and the
extent to which the two aides of (5.18-5) then balance is a measure of
the degree of precision with which the discrete formulation may be
replaced by the integral. It should be noted in this connection that the
order of magnitude of the various terms in (5.18-2) is dependent upon
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both the order of the s/R factor involved and the rate of change of 1[1
and its derivatives. We will suppose, for present purposes, that the
variation of [P] between adjacent cell centres (ie A(p]) is not
necessarily small compared with [p] but that the variation of A[p] is an
order smaller than A[p] itself, and so on for higher derivatives. In
this case the first and second derivative terms of (5.18-2) are each of
the first order of smallness. It is only when [p] varies rapidly from
cell to cell that first order corrections appear at all. For slow
variations of [p] all terms of (5.18-2), other than the leading term, are
of second order.

It will be observed that equation (5.18-4) has been developed as a
condition for the matching of microscopic and macroscopic potentials at
exterior points, rather than the matching of discrete and continuous
source strengths within an elementary cell. It may be shown, however,
that to first order accuracy equation (5.18-4) represents a common
criterion. (See Ex.5-74. and 5-77., pp. 530-1).

So far, considerations have been restricted to sources of common
velocity, or those filling a narrow velocity slot. If a similar
treatment is afforded each velocity slot the overall singlet density may
be computed by scalar addition. Since integration is extended over the
complete source system there is no requirement to employ the same
elementary cells for each evaluation. The determination of an
appropriate scalar density function for the individual slots leads
immediately to corresponding values for the volume density of current via
equation (5.17-7).

We turn now to the scalar potential of a volume distribution of time-
14dependent doublets whose source centres are fixed in space . Since the

potential of an individual doublet takes the form

[p].grad -I

the macroscopic potential of a distribution may be assumed to be

-f _.h+"-L3 -- P._+ dT

14. The potential functions developed in Secs. 5.13 to 5.15 assume that
centroids of the elementary source systems remain at rest.I
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Expansion about the point P and integration over AT yields

f) AT~ +r -Lx2i(.1)-F + yz1 .(Iilrkl) + Z2R.(fý2i~p)1

PR 'R x24` L ,x R yýa a,/

_1_..Q •x2 (L[Px)+yz (- [py]) + z2 (-- [p]) + ... (5.18-6)

2 ,.TVa ' I) + at

+i (A, -a]) + ZRf]j]

4+ AýARi(i} It(. a + R2 R W.Q aff

12yR ax -" a2her [ P ] ), _= (P ]) + Z--rj

TExpotential 5.86 at ndo the -7 disret sytmtoched firesteode infIi (5.18-6)

where a l ) -

[]+ _A, 2 R a±~ E.,X y~2 (Z ~) 2 ( 2t ) - 7 ( ] 5. -8

and .(aI 1(L[3

)p -R-25z18-9t
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Similar relationships are required in which I--P and I• i- replace [P]

and [p,], but these are automatically satisfi- if the above equations

hold.

Thus

a [a _ ax a = at ax

hence if

then

X2 (LI-g dtj

since si is independent of t.

An entirely similar result holds for the vector potential of a volume
distribution of symmetrical point whirls (or continuous whirls). The
integral formulation, to the order of accuracy discussed above, is

x grad! i dT

provided that equations (5.18-8) and (5.18-9) are satisfied when [P] and

[pil are replaced by [MI] and [mu].

There remains to be considered the vector potential of a volume
distribution of time-dependent doublats.

It follows from equation (5.13-10) that the integral form is a dT,

whence the required first-order matching conditions are found by

substituting the rectangular components 3f and Fdt1 for [p] and ai

in equations (5.18-4) and (5.18-5).

The vector relationships are then found to be identical with (5.18-8) and
Fdpi

(5.18-9) when and Ftii are substituted for [(F and [pi 1 , and are

consequently satisfied when equations (5.18-8) and (5.18-9) are
satisified.
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The above analyses are readily modified to cover surface and line
distributions.

While we are not concerned here with physical applications of the
foregoing treatment, it may be remarked in passing that in the field of
electromagnetics the nature of the distributions encountered is such that
cell sizes may usually be chosen sufficiently small as to render density
variations across them negligible, and that, in consequence, zeroth order
approximations suffice, both in the calculation of potential at exterior
points and in the computation of ponderomotive interaction between non-
overlapping configurations. Nevertheless, it should be borne in mind
that the replacement of a discrete summation by an integral is a
convenience which necessarily involves approximation, both in respect of
the number of terms adopted and the construction of the corresponding
density functions.

At interior points of discrete distributions, where the macroscopic and
microscopic potentials cease to correspond, the relationship between
their derivatives (as touched upon in Sec. 4.21 for time-invariant
doublets and whirls) is clearly an additional subject for investigation.
This will be considered briefly in Sec. 5.20.

EXERCISES

In the following exercises it will be supposed that the variation of
density from cell to cell, Ap, is not necessarily small compared with p,
but that second differences are small compared with first, and so on.

5-74. Show that the unretarded form of equation (5.18-4) is consistent with

the first order matching of 7 ai and f pdT. Hence conclude that the

argument leading to the equation of continuity is unaffected by the
modified construction of the density field.

5-75. Any discrepancy between the left and right hand sides of
equation (5.18-4), when applied to a distribution of stationary
singlets, may be corrected in an ad hoc manner by assigning to the

distribution a polarisation density F, where

-8) L ' 2ii_ (2k y2 (LP +P]
(p)P) A 2 Xýx) + \y (Z)j

Prove this, and argue plausibly that the more finely-grained the

structure of the system the smaller the value of P that needs to be

invoked for a given value of polarisation T ateti within the cell.

Show that it is not possible to supplement J with R to force a fit in
the equivalent expression for steady current flow with rapid transverse
variation.
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5-76. A point function # varies slowly from cell to cell within a distribution

of stationary singlets. Confirm that ai~ land fA pdr are

precisely matched to the first order of smallness if p can be chosen to
satisfy the unretarded forms of equations (5.18-4) and (5.18-5).

Investigate the corresponding requirements for the matching of

Z ixai)i) and f (rxpE) dT where E is a slowly-varying point

function.

5-77. For the mode of construction adopted above, the unretarded density
function p is required to satisfy the following relationship at the
point P and time t - R/c

o

+ +Y 2  + Z a2
{.P to-R/c0 - t t t

oc1 0- o- o-0

ie

- [ ~X21] + y2 Fa + Z2 F42 = ,(tot) c

while the retarded density function is required to satisfy

[ I + L jx2(a22  [P]) + y2  ý3 [1 ) + Z2 ( a2 [P ]) P7 - -L ( Z i)t2 3 2 ) ý P ý 5 TO -R/c

a2
Show by expansion of a [pI etc into its five constituents that these

relationships are consistent to within the first order of smallness,
provided that there is negligible variation of p during the transit time
of the expanding sphere across AT.

5.19 The Macroscopic Potentials of a Composite Source System

The Polarisation Potentials

The Lorentz Gauge

5.19a The macroscopic potentials of a composite source system

It follows from Secs. 5.17 and 5.18 that the macroscopic retarded scalar
potential of a system comprising volume, surface and line distributions
of singlets and volume distributions of doublets is given by
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--P- dr + L[EI dS + W .r ds + FP].grad dT- [ -- d
S rS

(5.19-1)

provided that the surface S, the contours r and the centres of the
doublets are fixed in space.

Surfaces and contours may be open or closed and are currently represented
by a single subscript in the associated integral. Since, for present
purposes, the volume distributions of singlets and doublets may or may
not overlap and may involve several distinct regions, the volume integral
is represented as taken over all space; it is supposed, however, that
volume densities are zero outside a spherical surface of finite radius
centred upon a local origin. The surface density a may include a time-
invariant component, a time-dependent component associated with a

discontinuity of volume current j, and a time-dependent component

deriving from a current K within the surface where divs K * 0. The line
density X, in turn, may comprise a time-invariant component, a time-

dependent component associated with discontinuity of surface current ic,
and a time-dependent component deriving from a variation of line current
density I along r.

When I is discontinuous, or r is open and I is non-zero at the end
points, it becomes necessary to admit one or more 'macroscopic' point
sources in order to keep faith with the model.

Thus if a denotes the strength of the point source, it is clear that at
an interior discontinuity of I

da
-Al - d- (5.19-2(a))

where AI is the scalar line current increment in passing in a positive
sense through the discontinuity.

We see also that if positive movement between open ends involves movement
from P to Q then

I - (da) and I - + di (5.19-2(b))
P RP (atQ

It should be noted that this type of point source is wedded to the
concept of continuity so that time dependence of source strength can
derive only from singlet motion. The 'non-macroscopic' point source

considered in Sec. 5.5 had a different connotation.

Equation (5.19-1) can be further generalised by the addition of terms
representing the potentials of surface and line doublets. The latter are
of little significance in applications of the theory and will
consequently be ignored. The surface doublet potential takes the form
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['-.grad 1- dS

where F' is the macroscopic doublet moment per unit area.

The doublets may or may not be orientated normally to the surfaces, but
their centres are supposed to be fixed in space.

More generally, then,

P] dr,+F dS + d. + [a

r r r

(5.19-1(a))

- - •~ - d
+ 'P1.grad r ~J.~ d, + gP] rad - ~dS

r c~r Jr at crj
S

The corresponding expression for the vector potential, with the addition
of terms deriving from volume and surface distributions of whirls, is

Q T +f dS + " ds + f d T +- a dS

®S r S
(5.19-3)

+ M]xgrad c[ j r d T + ER lxgrad - jdS
S

where R' is the macroscopic whirl moment per unit area.

We are sometimes concerned with only a portion of the total source
complex, such as that bounded externally by the closed surface Z. This
will be referred to as a subsource. A subsource is said to be complete
if no volume, surface or line current crosses E. In terms of the
microscopic model such completeness implies the existence of scalar,
time-dependent surface and line densities and point source strengths upon
E, wherever there is a normal component of volume or surface current or
an intersection with line current, in accordance with the equations of

continuity:

=J.n ; -- - K.n' ; . I (5.19-4)
J• n ; j @ n dt

A A

where n is the unit outward normal to E, n' is that outwardly-directed
normal to the line of intersection of S and I which is tangential to S.

and I is positive when directed outwards.

When these equations are not satisfied (as when current is continuous
through E) we may render the subsource complete by allocating source
densities in accordance with equation (5.19-4) to the inner side of I and
equal and opposite densities to the outer side. Since the paired
densities are actually superimposed the construction does not affect the
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potentials of the overall source complex, but it enables the completeness
criterion to be met for the subsource bounded externally by E and also
for that particular bounding surface of the exterior complex. The
concept of completeness is not relevant to doublet or whirl
distributions; their macroscopic density fields may be subdivided
without restriction.

The application of the grad, div and curl operators to multiple volume
sources does not present any difficulty because the formulae previously
developed apply at all points where the derivatives are defined. It
should be borne in mind, however, that those formulae involving integrals
over bounding surfaces have been based on the assumption that the density
functions have continuous derivatives throughout the bounded region.
Hence surfaces of discontinuity must be excluded from the region of
volume integration in such cases. As shown elsewhere, the effect of such
discontinuities is represented by the resultant of paired surface
integrals taken over the excluding surfaces. For an unbounded system of
volume sources such surface integrals alone survive. Since dal operates
upon a bounded scalar or vector volume source to yield a value at an
interior point which depends upon the local source density (or its
derivatives) and which is zero beyond the source, and since it is
unaffected by the presence of discontinuities which lie beyond a
neighbourhood of the point of evaluation, it is possible to employ a

single formulae for dal 4 and dal A at all points where it is defined, eg

dal pot [J] - -4wrj. This is accomplished by supposing that the volume
source extends to infinity but has zero density outside the source
proper. All points then become interior points of the source and dal is
additive for multiple sources without regard for position.

The d'Alembertian of equation (5.19-1(a)) assumes a simple form. It may
be shown that the component deriving from the surface doublet potential
is zero at exterior points of the surfaces; reference to
equations (5.7-2/3/4), (5.7-7) and (5.8-9) then allows us to write

dal 4 - -41(p-div P) (5.19-5)

Similarly, surface whirl distributions contribute nothing to dal A at
exterior points. Hence from equations (5.7-9/10), (5.7-12) and (5.9-10)

dalA T -47-4. \+ + + c curl (5.19-6)

Boundary conditions for the macroscopic 4 and A may be summarised as
follows:

(1) # is coitinuous through and upon

(a) the bounding surface of a volume distribution of singlets.

(b) a surface distribution of singlets.

(c) the bounding surface of a volume distribution of doublets.

(d) a tangentially-orientated surface distribution of doublets
at interior points where P' is continuous.
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(la) and (lb) follow from the arguments developed in Secs. 4.3 and 4.4
for the non-retarded case.

(Ic) follows from the transformation (5.8-1) coupled with the
arguments leading to (1a) and (Ib).

(Id) is the subject of Ex.5-82., p. 542.

# is discontinuous by 4wP' for movement in a positive sense through a
normally-orientated surface distribution of doublets at interior
points where P' is continuous.

This result follows from integration of []grad - •_ ." dS

S
along the lines suggested in Ex.4-14., p. 242.

(2) A is continuous through and upon

(a) the bounding surface of a volume distribution of current.

(b) a surface distribution of current.

(c) the bounding surface of a volume distribution of whirls.

(d) a normally-orientated surface distribution of whirls at
interior points where M' is continuous.

(2a) and (2b) are the vector analogues of (Is) and (ib).

(2c) follows from the transformation (5.9-1) coupled with the
arguments leading to (2a) and (2b).

(2d) is the subject of Ex.5-83., p. 542.

5.19b The polarisation potentials
1 5

When doublet and whirl distributions alone are present the scalar and
vector potentials are given by

" j Pl.grad r- . d + (P'].grad - .-- _ dS
r ItS r P

(5.19-7)

15. In electromagnetic theory the word 'polarisation' is associated. for
historical reasons, both with doublet and whirl distributions. but
according to the definition given in Sec. 4.1 a compensated point vhirl
exhibits zero polarisation.
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It follows from equations (5.7-9) and (5.7-12) (with appropriate
substitution) that

dal H - - 4wiP (5.19-15)

dal H - - 4w1 (5.19-16)

17
5.19c The Lorentz gauge

An important relationship subsists between certain derivatives of the
macroscopic scalar and vector potentials of any complete source, viz

div A - - ? (5.19-17)

This relationship has already been shown to hold for the Li'nard-Wiechert
potentials of a point singlet moving in any manner with V < c, and must
therefore hold for the microscopic potentials of any combination of point
sources. We now proceed to demonstrate its validity for the macroscopic
potentials. This is most easily accomplished by splitting the total
source complex into associated scalar and vector densities and treating
each separately.

We can dispose of doublet and whirl components iamediately by reference
to equations (5.19-13) and (5.19-14), whence the required relationship
follows.

For those components of potential deriving from the volume distribution
and associated surface distribution of singlets we have

[P "S d

c r

Here T represents the region of eubsource, S refers to interior surfaces

of discontinuity of J, and I denotes the bounding surface or surfaces.

17. In the present work the relationship expressed by the Lorentz gauge
follows from the definitions of the macroscopic potentials. This is not
always the case (see Sec. 7.9).
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Then at interior and exterior points of r

div d - 1 [fv~ dr- --J 1 n d±
cf r cJ r c~ r

Sst t

T S E

t at

We next consider the potentials deriving from the surface currents
(including possible surface currents upon Z), the scalar surface
densities arising from the non-zero surface divergence of these currents
and the line densities arising from their discontinuities. In this case

rif [ r

SE

where the contours may be closed or unclosed and include those defined by
the intersection of S with E.

Then from equation (5.6-20)

div A - - J[].grad - dS

But from equation (2.12-12)

1 - grads I + n (grad~

hence

[IJ.$rad - - [RJ.grads - since K.n - 0r r

Also, from equation (2.12-7),

diva - -[ diva IKi + il.grads
r r r
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whence, from a result of Ex.5-6., p. 404.

divsUKr IK2-,a
v- r [diva -] _" + -' - + [K].gradsr r cr2 t j cr LltJ an r

so that

(K],grad - diva r -

and

div --- divs - dS + (divs R] dS
c SSE r

--ci ds + [diva K] dS from (2.12-27(a))

r sr

where F denotes closed contours which embrace regions of the surfaces

within which K is well-behaved. These contours comprise paired sections

imediately adjacent to lines of discontinuity of K at interior points,
and unpaired sections comprising the boundaries of open surfaces within T
or lines of intersection of S with E. In each case Kn' may be replaced

by L along a closed or open contour, and since, in addition,

diva I - - Nt, we have

divA - j 1 F d] + rdS

Finally, we consider the potentials deriving from line currents, their
associated line densities, and the point source strengths resulting from
their discontinuities.

r r-0 - ds÷ •r

r

U- de
c r

r
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At points outside equation (5.6-19) yields 

C 
div I = - ? / k ~ l g r a d  - - 

r 

Now 

h 

r [q] + 111 (:.v ;) 
whence 

and 

where r comprises a set of line segments having continuous values of I at 
interior points. 

On applying equations (5.19-2(a)/(b)) (and (5.19-4) as requited) to an 
open contour composed of two such segments, AB and BC, we get 

so that in general 

- 2 for the overall It now follows from superposition that div A - - - c at 
configuration. It will be observed that densities associated with static 
assemblages of point singlets have been ignored; these contribute 

a @ neither to - nor to x. In the case of an incomplete subsource the 
at 

relationship fails because the surface integrals over I which appear in 
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5-84. Show that the macroscopic vector potential of a tangentially-orientated,
plane-surface whirl distribution is given, for an arbitrary positive

A

sense of n, by

xn an \ cr rn (a'txn) dS

[curls R'] dS + ds

S r

Hence demonstrate that this surface source is equivalent to a tangential

double surface source of density R' x n (see equation 5.5-11), a normal

vector surface source of density curls R', and a normal vector line

source of density M' x n'.
A

Show that A is discontinuous by 4w(R'xn) for movement through the

surface at an interior point where R' is continuous.

[While the double surface source is readily identifiable with a double
i

surface current, the normal orientation of curls R' and R' x n' to
surface and contour respectively renders their interpretation as current
flow less satisfactory.]

5-85. In the absence of surfaces of discontinuity it is possible to express

the retarded vector potential X of a volume distribution of singlets,
doublets and whirls as a potential function with an unretarded
Integrand. In addition to the unretarded source-densities the integrand

1 Aincludes the point functions E - - grad * - L - and #, where 4 is the
c a

retarded scalar potential of the system.

If the source densities are zero outside a spherical surface of finite
radius, show that

- irj 1 I 3 curlN 1M 1 ad d+- dr + r dT + . ... dTc rT r- c r 4w at

c at
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Note that the unretarded vector potential of a volume distribution of
continuous or symmetrical-point whirls is given by

x grad !dT =fcurl R dT

and not by f x grad!• - c] dT

5-86. By making use of equations (2.12-12), (2.12-27) and a result of Ex.5-6.,
p. 404 show that the retarded potential of an oblique surface doublet
may be brought, at exterior points, into the form

.f [ (P grad .d -f [P' 2- + n

S S S

- f [div. P'] dS + f r ds

S r

Observe that this reduces to the result of Ex.5-82. when P' is

tangential to the surface, and to the standard form when P' is normal.

Suppose now that the surface is plane and that P is oblique and every-
where the same. Show that the third and fourth terms of the above
expression vanish, and justify the remaining terms by treating the
source as the limiting configuration of two plane singlet layers of
equal and opposite density subject to a tangential slip.

5.20 Microscopic/Macroscopic Relationships for E and B Fields within Volume
Distributions of Doublets and Whirls

Let a spherical surface of radius 6 be centred upon a point 0 within a
volume distribution of doublets. It will be supposed that 6 is
sufficiently large to ensure that the microscopic and macroscopic
potentials deriving from doublets beyond the surface are sensibly equal
throughout a neighbourhood of 0. Then it follows from equation (5.11-19)

that the microscopic E field at 0 due to the complete distribution has
the value

E~c - - grad(cavity) [Pl.grad - - -a.-! r d¶ - c L c r da +Eit

TT(6 
T'T06
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where T is the region occupied by all sources, T6 is the region of the

sphere, and Etnt is the contribution from sources within the sphere.

Equations (5.11-19) and (5.11-20) serve to define the macroscopic E and
fields when the microscopic potentials are replaced by their macroscopic
counterparts. Hence, corresponding to equation (5.20-1), we have

mac f ~.grad. -c',r] tcjr
mac grad r - ['- 3 d• - dT (5.20-2)

T

By combining the above expressions with those given for grad cavity pot
and grad pot in Table 7, pp. 461-2 we obtain

Ei mc+f divP] L i dT ýL[F].dS!+ L.d

T• S

(5.20-3)

+ ' dT + d int

T 6

The restriction imposed upon the minimum value of 6 implies that the

region T6 may be subdivided into a large number of statistically-regular

volume cells. Correspondingly, we admit the possibility that P may vary

from point to point of the region at any instant, but stipulate that
can be sufficiently represented by

Px " f(t) (f + axX + Bxy + yxz)

Py - fy(t) (y + a yx + Byy + y yZ) (5.20-4)

Pz " f (t) (1 + az x + 6zy + y z)

where 0 is identified with the origin of rectangular coordinates and a,
B, y are constants.

Thus it is supposed that the variation of the gradient of each scalar

component of f across T is negligible compared with the gradient itself

so that second space derivatives may be ignored. Then at any instant,

div f and L div P are constant (or zero) throughout T8. In theseat 6
circumstances the associated volume integral in equation (5.20-3)
vanishes from symmetry.

The values of 17] and L-PI upon the spherical surface may be expressed in

terms of L, and further derivatives at 0 for any particular time as

follows:
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P L- 2-2 a-t2  - (r.V) T+ (.V)
6 c at c a + ( .) - t

(5.20-5)

r -aPa ta V a2 a - - 3a2

$a at - +- (r.V) P - (r.V) P (5.20-6)

Time derivatives of order higher than the second have been omitted from
these expansions.

In the evaluation of f [P].dS T it will be observed that radially

S6

opposite surface elements are associated with reversed directions of

and dS.

Hence each term in the expansion of (P]s6 which suffers a like reversal

of sign will disappear upon integration. This eliminates the fourth,
fifth and sixth terms of equation (5.20-5). For the same reason the
third and fourtb, terms of equation (5.20-6) are eliminated in the

integral r aP .d-S

Sa

We find that

S- •" [' 'dS rr- + cr •• d

S8

S4 4 3P 2w6 2 a 2
+ 4w6 aP 4w6 2 a2f

3 w c a-+ - a30+ 3c at
4 - 2w62 2-

To the same order of approximation

2L - 2 3

T 6
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so that

E.rP4w+ 2 +E (5.20-7)
mc Mac 3c at Int

Emnt must be evaluated by direct su-atior of the contributions of

individual doublets as expressed by equation (5.16-1), viz

intL~rir ~ ?Ld r4.Lr cr g j c dt

(5.20-8)

It is clear that this component of Emic will vary wildly from one doublet

to the next and that it is not possible to proceed analytically until
some choice of configuration is made.

We will consider only the simplest case - that in which the doublets are
located at the vertices of a cubic lattice and are of equal instantaneous
vector moment. The point 0 will be taken to coincide with one of the

doublets and E intwll be determined for all doublets other than that at

0. On expanding equation (5.20-8) in rectangular coordinates and taking

the terms in consecutive pairs we find that the x component of E nt may
be expressed as

( ;j2x 2
-y 2

-z 2
) +x3x] + ] + 3xz 1P
Irb (px rt, y r7

S 2x [-x] + 3. [P] 3• z t } (5.10-9')

146 J.2..2) fd 2 ] ' d2p] [ d2p
(L cr-; Ldt2 J + c dt J . c2-r

The x and y components follows from cyclic permutation.

By pairing doublets having equal values of x and r and equal and opposite
values of y and z it is found that the cross products in each line cancel
in the sum. Further, since the rotation of one coordinate plane into
another about 0 leaves the bounded lattice occupying the same points of
apace. ye have

(2 2-y- 2  
1ý- -Z__+C

2 z~Z 2-
-(2x- 1•- ( 2x_--, -. x 0

r5 r

and

C( r)- = (ic'r" , - ( '-; " - -

c'Jc r r&
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Hence

-2 43dt2 (5.20-10)
int 3c7 dtz r

if we restrict _ i2] to the leading term.

Then

S- 4w6 3 P 2 (5.20-11)
mic Emac 3 wP y at 3c dti r

where all terms are evaluated at 0.

Since equation (5.20-11) holds independently of the value assigned to 6,
provided that T6 contains a large number of elementary cells, the sum of

the last two terms must be constant. Thus if 6 + A6 replaces 6, the
increment in the final term may be written as the integral

6+A6
2 32ý; _ ir 8WSAS ;2f
3t2  2 4r 2 dr =-t- 3-• -•tr 3-7-• i--2

This is seen to be equal and opposite to the increment in the penultimate
term, as required. This procedure does not, of course, legitimise the
extrapolation of the integral form of the final term beyond some minimum

value of 6; it is ultimately necessary to evaluate the series I .

When this is carried out for a relatively small number of doublets
centred upon 0 it is found that the last two terms of equation (5.20-11)
very nearly cancel. (Ex.5-91. and 5-92., p. 552.) Hence for this
particular configuration of doublets within r 6 the microscopic field
strength at 0 is given by

E f +" JP (5.20-12)
mic Mac 3

The microscopic 1 field within a volume distribution of whirls may be
determined in a similar manner.

Since

- curl (cavity) " grad x. d- +- (5.20-13)

T-T 6
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and

- F - I a ! _• d ( 0-i
'9 curl j Ixgrad - t cr 2

T

it follows from Table 8, pp. 465-6 that

B-ic " _1 a + I [curl R] x3+ curlR dT

T a

(5.20-1 5,

r at c r2_ i
S6

When the scalar components of R can be adequately represented within T

by expressions of the type (5.20-4), curl R and - curl R have constant

values at each instant and the volume integral of (5.20-15) vanishes-from

symmetry. By expanding [(I and tt about 0 as shown for (f] and a in

equations (5.20-5) and (5.20-6) ano evaluating the surface Integral. we
obtain

3 c T t 2-'P a t-t-y/ + T ,, -a •-3- 'z ,.

whence

mc- _s 8- 4+•2 j 2

B B -- R + 4 t 22 M t (5.20-16)
Smc c • c --- + int (2-6

On comparing this result with equation (5.20-7) and noting that the value

of Bint deriving from a single whirl is identical with the value of E nt

deriving from a single doublet (with m replacing p). we see that for a

cubic lattice distribution of whirls within r6 the microscopic B at the

central whirl due to all others is given by

- - 8-B 8 B -M IM (5.20-17)Smic " mac 3

We turn now to a consideration of the microscopic i field of a volume
distribution of doublets.

[ I m a n H i l I • • I i B eeI l l i
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Since the possibility of non-zero second apace derivatives of Lb has been
at

entertained in the derivation of equation (5.20-21) the expression

remains valid if. at each instant. the scalar components of curl 3F

maintain a constant slope within T

For the lattice type of doublet distribution previously considered, 5int

vanishes at 0 from symetry and curl P - K. Hence equation (5.20-21)
reduces to

asic " B (5.20-23)

Finally, we investigate the microscopic E field of a volume distribution

of whirls. In this case t - - - , since a fully-compensated whirl
c atdoes not give rise to a scalar potential, hence

- I • l I i r-
Ric cT n c n

T--T

or

Ec - E + x %rad a + (5.20-24)

T 6

1 From equation (5.16-10)

-E~n " - d x grad x (5.20-25)

int 1c L jd~t r LTtJ x o52025

It is seen that equations (5.20-24) and (5.20-25) are formally identical

with (5.20-20) and (5.20-22) where E replaces B, and (-4) and (-Z)

replace P and p, consequently equations (5.20-21) and (5.20-23) transform
to

Ei " 1 mac + L-' curl 8-! +E (5.20-26)

Mc C 3c t- int

and

Emic "Eac (5.20-27)
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EXERCISES

5-87. Derive the following alternative to equation (5.20-20):

cic rmac - f -[url d - Win,

Sa

P6

Expand url 1 and F21 about 0, assuming that the second and higher
Lc 3ýJ La I 9F

space derivatives of cur are negligible, and show that the volume

and surface integrals reduce to

curl•• + A, curl alp
C at 3c' at 2

and

47r6 2  aP 4 6 3  2-p
3c curl - - curl

Hence confirm equation (5.20-21).

5-88. Show that equations (4.21-11) and (4.21-27) are time-invariant forms of
equations (5.20-12) and (5.20-17).

5-89. Extend equation (5.20-11) and the equivalent form of equation (5.20-16)
to include third order time derivatives, and show that in each case the
additional terms cancel.

5-90. Show that the neglect of third and higher-order time derivatives in
equations (5.20-21) and (5.20-26) imposes an upper limit on the

permissible values of LP and -which, in terms of the period T ofat atsinusoidal oscillation, may be expressed as T2 >> (6/c) 2 .

5-91. If the edge of a simple cubic lattice element is of length d and there
are N doublets within the region Tr, show that equation (5.20-11) may be
approximated by

Emic Emac + +c. dt dN w1 3- rj

5-92. A cubic lattice structure of overall dimensions 4d x 4d x 4d has half of
its constituent cubes removed to give it a roughly spherical outline as
represented in plan, front and side elevation by the accompanying
figure. Doublets of equal instantaneous moment are located at each of
the vertices.
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Evaluate the third term of the expression in the previous exercise and
so demonstrate that its two components cancel to within a few percent of
their individual values.

I4 d
I i

•, - 4d -. i

Figure to Ex.5-92.

5.21 Maxwell's Equations

It is evident from earlier considerations that macroscopic source
densities are so defined as to render the microscopic and macroscopic
potentials sensibly equal at points sufficiently removed from the
associated distributions. The approximations fail at interior, boundary.
and immediately adjacent exterior points. Nevertheless, the macroscopic
potentials exist in their own right once the corresponding source
densities have been defined, and the results of Sec. 5.19 continue to
apply whether or not the density functions derive from any 'real' point
distributions, provided that the appropriate equations of continuity are
satisfied. In particular, at points exterior to surface, line and point

18
discontinuities we have the following macroscopic relationships

dal * - -4w (P - div P) (5.21-1)

dalA T + + c curl (5.21-2)

div A - - E (5.21-3)C at

Since the macroscopic point functions E and B continue to be defined by

equations (5.11-19) and (5.11-20), where * and W are macroscopic
potentials, it follows immediately that

18. Unless stated otherwise it will be supposed that we are dealing with
an undivided source complex or a complete subsource.
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On proceeding in this way we find that

i.dS - 0 (5.21-20)

is 1 is solenoidal,

and

D.dS -
4
, pdr + 4w a dS (5.21-21)

S S1 ,S2 ..

where T comprises the subregions TI, T2.. enclosed by S and bounded
internally by S1. S2 ...

We have also

-~d - L ' [ B.dS (5.21-22)

r S

where S spans r and comprises the subregions S1, S2 .. bounded internally
by the contours rI, r2.. which are defined by the intersection of the
surfaces of discontinuity with S. Since the vector tangential component

of 1 is continuous through a surface of discontinuity in accordance with

equation (5.21-13) the resolved parts of E along rF, r2.. are equal on
either side of each contour, but the line integrals cancel in the sum
because of reversed currencies.

Finally,

, 4H.dr - F + ,dS + - d (5.21-23)
\c cýt/ c n

r S r1 ,r 2 ..

where Kn is the component of K normal to 1, r2-.. in the direction of then

positive sense of S as defined by circulation around r.

The equality may be expressed in the form

rH.d - + d}(5.21-24)

r S

where C is the total rate of transfer of source strength through S it the
macroscopic current through S (p. 522).
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It is clear that equation (5.21-24) will continue to hold in the presence
of volume currents having such density and form as to approximate line
currents which cut S. Line currerts, per as, are awkward to handle

because E is infinite along the line.

A relationship of historical interest19 takes the form

div (J + L Z-) - 0 (5.21-25)

This follows immediately from equation (5.21-11) and indirectly from
equations (5.17-15) and (5.21-10).

In the absence of interior line and surface currents

d+j 4 St/ - 0 (5.21-26)

S

since a combination of the time derivative of equation (5.21-12(a)) with

nl.Jj + n2 .J 2  a

yields the required boundary condition for the cancellation of

contributions from surfaces of discontinuity. In the presence of line
current approximations or of surface currents which cut S,
equation (5.21-26) is replaced by

AC + L 5--.dS - 0 (5.21-27)

S

where AC is the net macroscopic current entering the enclosure. It then
follows that two simple opensurfaces bounded by the same contour exhibit

equal values of C + L L.d when assigned a common sense of the
41rj at

normal. This will be seen to be a necessary condition for the validity
of equation (5.21-24), since no restriction is imposed on the shape of

the surface S which spans F.

19. Possibly the most famous of all in an electromagnetic context: the
component L Lt is Maxwell's so-called 'displacement current in free

4w st
space'.
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EXERCISES

5-93. Let * be defined by equation (5.19-1(a)) and A by (5.19-3). In
addition, let a scalar point function I be defined by

(" Pm a] aol [AM] [&a]-

- d + , dS + - ds +
r * r r r

+ I[T I.grad r - [•-ý-] "-} d, + {' ['].grad - dS

where p. ... P are the macroscopic densities of certain singlet and

doublet distributions which have no connection with p...P.

Further, let

A - I - dr + j dS + d. + I •- dT + F m- dS
m cjr cJ r c r cjr Lat! c r Latm

where .m . p v etc, so that identical equations of continuity hold for

the m-type distributions as for the conventional.

Show that if

E grad 1 LA curl

I - + 47

S curl A - grad - DA m + 41Pf

m

then at points displaced from point, line and surface sources

div B- 4r pm

curlE - 9B 4
cat c m

div D 4irpI
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c c ;at

These are known as the Reaviside-Maxwell equations.

5-94. In a composite source system characterised by the denilty functions o'.

a. J, K, P together with their u-typo equivalents, show that when F, 5,
1, H are defined as In the previous exercise, the boundarv conditions
become

nl.D+ + n2 .D2 " -41o

al x El + n 2 x E 2  c

nI.Bj + n2.B2 - -4wor

A A

S -+ -4vr

El x 1 +; 2 x H 2  - c-

5-95. Deduce from the results of Ex.5-93. that if, in a conventional composite
source, whirls are replaced by m-type doublets, Naxvell's equations
continue to hold provided that

E - grad L- - curl
c at m

D - E+4•

H curl A- grad. -f 3A

M it

where

Z .• ;~ j ++ ;-- dSS. .dT.. .
A W Lati c r 9TJ
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dj [:11.4S - f ý-div [U] d-r+f-L (J] dT - 2f-i- -.[J T (.23

St TTV T I

where S' is the surface or surfaces bounding some particular region T'.

This result holds both within and without T' since it is easily shown
that at interior points of r' the individual volume integrals are
convergent and the surface integral, when taken over a 6 sphere about the
origin of r, approaches zero as 6+0.

By a similar transformation

r--2(.0 ds -diva [K] dS +f [1) dS - 2 f r [k dS

r "l Sol So S"

(5.22-4)

Here, n' is tangential to the surface S" and normal to its bounding

contour or contours rF. Since K.n' has been supposed to be zero when S"

is open, end i is continuous upon a closed surface, the left hand side of
equation (5.22-4) vanishes in all cases.

Upon substituting equations (5.22-3) and (5.22-4) in (5.22-2) we obtain

- ( dT + 2 dF.r (3 dT + f _ r .d - p [K]dS

T T

+ 21 ~ . dS +f C'
S S

whence, at points exterior to the surfaces,

(p] - [ d d- I][a] r dS - 1 r1 [1t) di +f cv [r]dT

S
(5.22-5)

-f 1 ttdS+ rds- -f i at dTf- c dS
S S T fS

where - J.r r and it " "
r tr

. • .li~i -- • i '4
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r is seen to be the vector projection of J upon the line joining dT tor

the point of evaluation of E, and J t is the corresponding transverse
20tcomponent

It is noteworthy that the transformation of equation (5.22-1) into

(5.22-5) has allowed us to express the inverse-distance component of E in
terms of the first time derivatives of the transverse current densities
alone.

The contribution to E of line currents (and associated point sources, if
any) may be shown to be

Kr r f [ ~ ~ d ~ r t ~r ' d

(5.22-6)

fft]
- + tr L ds

r

It is also possible to express the time-dependent component of E entirely
in terms of the current densities, their time derivatives and their time
integrals from an arbitrary time datum. This is the subject of
Ex.5-101., p. 571.

The evaluation of B is straightforward. For the general case

S- curl L-- dr + curl (K] dS + curl I d-

20. It should be noted that the term 'transverse current density' is
sometimes employed by other writers with the following connotation:

- -j grad! where *dr

t~mmm m4m at r .,mm
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whence, at points exterior to the line and surface sources,

S• . - •I [71 d, - 1 [f ] x dS -• [1x d

Ssr
(5.22-7)

f ] ~ d r F4 [, x -~dS x -f I -x- d.
- -Cr - c cr2

LaS "c S [a

It is clear that J and Tmay be replaced by Jt and (and likewise for

"K and Y) in the above formula.
Since scalar source densities do not enter into these expressions they

hold equally for complete and incomplete subsources.

Under certain conditions of symmetry the evaluation of B or H in

accordance with (5.22-7), and the subsequent evaluation of curl H,

permits of a determination of the time-dependent component of E via

curlH - ci +c'c z Tt

However, the latter relationship was derived on the assumption of

subsource completeness, and the value of E obtained in this way is
consequently that appropriate to an undivided source or complete
subsource although the parent source may have been incomplete.

5.22b Fields of macroscopic doublet distributions

In the presence of volume and surface distributions of doublets the value

A* of B at exterior points of the surfaces is given by

I- -grad Fl .grad d - grad JP .srad 1 - 3 . dS

- _- dT-C- •t dSf 1r ik -- r f ý r -1l
T S

grad div f [P]_ dT + grad div dS - -2• -- dT

T ST

(5.22-8)

S i
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ............. i m l i ~ i |I ii l f ll I
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or

.-grad div - • e (5.22-8(a))

Also

S +4ýP - grad divn - -2 a -dal1e

- grad div 9 - 721
e e

or

D= curl curl I (5.22-9)

It follows from equation (5.22-8) and equation (17) of Table 6, p. 446,

with P replacing J, that the contribution of the volume distribution to
at interior points may be expressed in the non-convergent form

+ -_ ff - _ •2f 1 F 2 dT
j j i ý c +r r ~jcr LaiU dr

(5.22-10)
Lim ! 1 Lim, r 1djd

+ t'L0 ([P].V) grad 1 dT _ SLi0 j[].dS gradr
T'40 '-T--T' St

At exterior points this reduces to

= - - - dTf
[_f g + a 5P 37r 5 C~ + 5r- r.I''F1r tj +-r.j- - r Ltr Ti~~

T

(5.22-11)

It will be observed that this expression is the integral form of the

field of a microscopic doublet (5.16-1), as would be expected.

The contribution to 1 of surface sources, at exterior points of the

surfaces, takes the form of equation (5.22-11) with P replaced by P' and

dT replaced by dS. Equation (15), p. 445, allows us to express the 1
field of a volume distribution of doublets, at interior and exterior
points, as a combination of inverse-square-distance and inverse-distance
terms. We obtain
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=f CdivP] +Fdiv] jdrT~ ~ !d,
T T

(5.22-12)

S

where S includes interior surfaces of discontinuity in addition to
bounding surfaces.

The W and 1 fields of volume and surface distributions of doublets are
given at exterior points of the surfaces by

cr= H curl f 1 1 dT + curl 1 1 1 dS

T

- curl L 1 (5.22~-13)

- ; jyj X-•+ [-j X, dt-~ J L.at] ' + Larj " dS

T

(5.22-14)

The contribution of a volume distribution alone may also be written for
all points asa cr ] ,S

bouning urfces.- d - ~~dS(5.22-15)

where S comprises interior surfaces of discontinuity together with
bounding surfaces.
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5.22c Fields of macroscopic whirl distributions

In the presence of volume and surface distributions of whirls the value

of B at exterior points of the surfaces is given by

" -curl / ]xgrad - X dT

T

cu l ' r~xl F~
+ curl [l]xgrad - L~ J x dS

S

- curl curl f!- dT + curl curl f al dS (5.22-16)

T S

or

B curl curl II (5.22-17)
U

1 2

grad divt - 2 a- M - dal a

whence, at interior points of the volume distribution,

3 grad div Iff - -_ -i1 + 4wrM (5.22-18)

and at both interior and exterior points

grad div If - ' 12 2i (5.22-19)

Alternatively, from equation (5.22-16) and equations (17) and (21) of

Table 6, pp. 446-7, with N replacing J, the contribution of the volume

distribution to I at interior points becomes

r (F1 r-Fi _2M 1 [3a2-LIE ) -ý + -ý i r.[ + -r3 r.[~ -t cr atj dr

T

(5.22-20)

+ 4A÷ + - (I.V) grad 1dT t Li ([.]dS grad -J TO S'÷O
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Beyond the source

' L-a[].v) grad c +

T

(.5. 22-21)

The contribution of surface sources to B at points exterior to the

surfaces takes the form of equation (5.22-21) with 14' replacing H and dS
replacing dd.

Further, it is seen from (5.22-16) and equation (22), p. 447, that at

both interior and exterior points of a volume distribution of whirls

S- -I[•rl• • + curl • _.d

JY + - i r J _$

(5.22-22)

where S includes th in tior surfaces of discontinuity and bounding
surfaces.

The e and D fields of volume and surface distributions of whirls are

given at exterior points of the surfaces by

- [(d.9 f R]xgrad +( - [3M ] )dj

- J j - " - - r dS

Sc at r -2E url N
a•S:

dS I
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or

I - D curl j (5.22-23)

The contribution of a volume source alone may be expressed everywhere as

-f V -u [Ta curl dT + 1 • - "

T S

where S includes both interior surfaces of discontinuity and bounding

surfaces.

5.22d Sumary of formulae involving polarisation potentials

It is of interest to compare the field formulae for doublet and whirl
distributions when expressed in terms of the associated polarisation
potentials. We have

doublet distribution whirl distribution

I grad div I-T ý2 .grad d-v 1_ at2 it

3 = curl curl I - curl curl!]
0 a

S•--lcurl-flc at e c at m

For a mixed distribution

I - grad divfl - 3t2  I curl ei (5.22-24)

•2

grad div ll 4  32 + 1 curlL -H (5.22-25)
S t' "m' at e

D - curl curl 1 - 1 curl L (5.22-26)

B - curl curl 11+ curl (5.22-27)a c 12t22e
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EXERCISES

5-98. Prove equation (5.22-4).

5-99. Consider in some detail the possible geometrical disposition of the
surfaces which appear in equations (5.22-2/4). Why may the final
surface integral in equation (5.22-2) include an open surface when the
corresponding surface in equation (5.22-3) is necessarily closed?

5-100. Consider a volume distribution of neutral current which closes upon

itself. According to equation (5.22-1) the associated i field is given
by

and according to (5.22-5) it is given by

ir -cr - ~ ~ d r c 4 f]d
Demonstrate that the two expressions are equal by splitting the current
flow into a system of closed stream tubes and showing that the
difference of the expressions may be represented as the sum of a set of
closed line integrals of exact differentials.

5-101. By combining the result of Ex.5-78., p. 541 with equation (5.22-11)

show that the time-dependent component of the E field of a complete

source characterised by ., p and a may be expressed at exterior points
by

Sto to

r r~ dr33

-• [3t] dt + r-• [Jr dt - [7t + 3c _ [3r] + -•-r d.

T to0 to0

f f {Jt] dt +* f 2 ~ dt - 1 Y +-~ 2 f .4dT1}

j:r C c J ' c r ---
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Show further that at interior points

-'T (U: .) dt.) grad - j 't + -- [J' 2 [3'l} dr
t

4 dt

to

where the first component of the volume integral signifies the limit
which obtains when the excluding surface is spherical and centred upon
the point of evaluation.

5-102. Derive the following relationship for a complete line/point singlet
source system.

L [ds [a]3 ft[ d 1 - d

r r cr r

[ýl d,

F a1
r

5-103. A complete straight-line source is characterised by a uniform

macroscopic current density Y which is a sinusoidal function of time.
If the length of the source is made to approach zero while the current
density is increased to maintain the product of peak current density
and length constant, the limiting configuration is known as a Hertzian
dipole.

By analogy with the point doublet, the scalar moment of the dipole is
defined to be the product of its length and the scalar point source
strength developed at the ends. Use the result of Ex.5-102., together

with equation (5.6-30), to show that the time-dependent 1 and i fields
of the Hertzian dipole are identical, at exterior points, with the
fields of a microscopic doublet of equal instantaneous moment, as
represented by equations (5.16-1) and (5.16-3).
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5-104. Use the results of Sec. 5.22 to show that B - R x E at infinite
t

distance from a mixed source of finite dimensions, where R is the unit
vector directed from some point of the source to the point of

evaluation. Hence show that I x × .dS, when evaluated at infinity,

can never be negative, and use this result to extend the uniqueness
theorem of Ex.5-97., p. 561 to the case where r recedes to infinity andA A

n x E or n x B is specified over Sl..n alone.

1..

L

4[





CHAPTER 6

HELMHOLTZ'S FORMULA AND ALLIED TOPICS

6.1 Helmholtz's Equation

Helmholtz's Formula

Conditions for Uniqueness

6.la The bounded scalar field

It is easily shown that the asymmetrical and symmetrical forms of Green's
theorem (1.17-10/11) continue to hold when V and U are complex scalar
point functions having continuous second derivatives within the
integration space. Thus, in the notation of Sec. 1.22,

3 S - V2 Z dT + grad U.grad V dT (6.1-1)

S dS -

S1. n T T

and

5 -n V dS " (UV 2 V-VV 2 U) dt (6.1-2)

S1. .n T

A If V a + jb where a and b are real, the complex conjugate of V, viz V*,
is defined by .* a -jb.

Let U - V*. Then

V -d (72+2) d- - 2  -Z d- + grad V*.grad V dT

andS -k )V d ' - V*V J V+

S I. T T T1. .n

(6.1-3)

where k2 is a real, imaginary or complex constant.

Suppose that within the integration region R

(V2+k 2 )V - 0 (6.1-4)

575
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and that. in addition, V (and therefore V*) or is zero upon S nZ.
Then

0 - k
2
J V*V d+ grad V*.grad V dr (6.1-5)

Now V*V and grad V*.grad V are everywhere real and positive or zero since
they. are respectively equal to (a 2 +b2 ) and {Igrad a12+1grad b12 ). Hence
if Fis imaginary or complex, equation (6.1-5) can hold only if 0 is zero
throughout R. This result parallels that obtained for a harmonic
function in Sec. 3.2. However, the argument fails when k is real since
non-zero integrals may cancel. Correspondingly, point functions are
known to exist which satisfy equation (6.1-4) within R and are zero or
have zero normal derivatives upon the bounding surTaces. These are
called eigenfunctions and the associated values of k are known as eigen-
values.

Equation (6.1-4) is the homogeneous scalar Helmholtz equation. It is of
considerable importance because many of the differential equations of
mathematical physics can be expressed in this form. When k2 - 0 it
reduces to Laplace's equation.

If equation (6.1-4). with Z imaginary or complex, is satisfied everywhere
outside S1..nZ and the surface integral over X in (6.1-3) vanishes as E

recedes to infinity, it follows that V will be zero everywhere outside

S if V or Vis zero upon S1 . For this exterior case, however,

it may be shown that the result continues to hold when k is real,
provided that certain boundary conditions are satisfied at infinity. The
matter is discussed in detail in Sec. 6.1c. Meanwhile, the above
considerations lead directly to the following uniqueness theorem:

If is an Imaginary or complex constant and if (V2 +k 2 )V is a specified

function of position in the region R bounded by the surfaces S .. nZ, then

V is uniquely defined within R provided that any one of the following
conditions is satisfied.

(1) V or - is a specified function of position upon S I.

(2) V is constant over each surface in turn and fn dS is specified

for each surface.

(3) The vector tangential component of grad V is specified at each

point of S E and T dS is specified for each surface.
1..n n

(4) !+ p V - q where p and q are specified functions of position

upon S I..nI and p is everywhere real and nowhere negative.

(5) One or other of conditions (1) to (4) applies to each surface.
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6.1b The bounded vector field

The results for the scalar field are applicable to each rectangular

component of a well-behaved vector field F so that the specification of

(V24Z)ýF throughout R, together with boundary conditions corresponding

to those set out above, render F unique within R provided that k is
imaginary or complex. However, we may also proceed in the manner
suggested by Sec. 3.7 by writing

div (F* x curl F) - curl F.curl F* - F*.curl curl F

me M - - a.

= curl F.curl F* - F*.grad div f + f*.V2F

where F - a + Jb and F* - a - jb

whence

(F* x curl F).dS curl F.curl F* dr - F*.grad div F dT

S I..S1. .n•

(6.1-6)
(V2+k 2 )Fdr _F 2 F*.F dr

z T

By proceeding as in Sec. 6.1a we may show that, for imaginary or complex

values of i, F vanishes throughout R if

(1) F satisfies the homogeneous vector Helmholtz equation,

(V24+2)3 - 0, throughout R.

(2) div F is constant or zero throughout R.

A. ch. & .
(3) n 9 F or n x curl F is zero upon S I..n a.

Further, F is uniquely defined throughout R if (V2+f2) a d ae

specified functions of position within R and n x F or n x curl F is a
specified function of position upon S I..n.

The individual specifications of (V2 +k 2 )F and div F may be replaced by

the specification of curl curl F - k F.
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6.1c The externally-unbounded field

Sommerfeld's conditions

By substituting ; ejkr for U in equation (6.1-2), where r is distance

measured from 0, and proceeding in the manner of Sec. 3.3, we find that

0 oJ k V e -- ejk dS - J (V2+;k2)-d

Sl1..nx T

(6.1-7)

according as 0 lies within or without r.

No restriction is placed upon the (constant) value of k.

If (V24 2)ý-= 0 throughout T, the above relationship reduces to
Helmholtz's formula, viz

i..n -IJn (1 a kr dS (6.1-8)

When V satisfies the homogeneous Helmholtz equation everywhere outside
the closed surfaces S .. n' the surface Z may be removed to infinity and

made spherically symmetrical, with radius R, about some fixed point P in
the vicinity of S I..n* Then provided that OP is finite, the associated

surface integral approaches

5'R - R + R-2f d

This will vanish if

Rj'kr Jk• (6.1-9)

Re L3R + V] -*0

uniformly in all directions as Ro.

When k is real, (6.1-9) is satisfied, inter alia, by

R •-i~) +0 ; R V bounded as R-o (6.1-10)

These are known as Sommerfeld's conditions; the first is the 'radiation
condition'.
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We now proceed to show that if (V2 +k 2 )V - 0 everywhere outside S , and
1..n

if V or is zero upon S then V vanishes everywhere outside (and3f•o n Iszr pnS..n,

upon) S .. n provided that appropriate Sommerfeld conditions obtain.

In the present case equation (6.1-3) reduces to

jndS = _' 2  VV dr + grad V.grad V dr (6.1-11)

E T

As E recedes to infinity, the left hand side of equation (6.1-11) may be
replaced by

V (JkV+e) dS = i V* dS + J RV*Rc dQ

where R- JkV e c.

Suppose first that k2 is complex so that k =•(p+jq) where p and q are
real. We choose the sign in such a way that k may be written as a + JO
where 8 is positive.

If the Sommerfeld conditions hold for this value of k it is evident that
R240 as Z recedes to infinity, and, since RV (and therefore RV*) is
bounded, the limiting form of equation (6.1-11) becomes

J(a+Jo) V*V dS + (a 2 - 2
+2ji) f V*V dr = grad V*.gradVdr

where T now represents all space outside S1 .. n'

The imaginary component of the equation is

c1{4V*V dS +28f V*V dr} 0S*r

m T

Since B is positive and V*V is always positive or zero, it follows that V
is zero everywhere outside (and upon) S .. n.

Now suppose that k2 is real and negative. Let k = +J8 where 8 is
positive. If Sommerfeld's conditions hold for this value of 'I,
substitution in (6.1-11) yields

-aBfV*dS - 02 / 'dr-f grad V*.grad Vdr

- T T

Here the signs are such that Vmust again be zero throughout T.

Finally, suppose that k 2 is real and positive.

-Y
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In this case a new approach is required. When (6.1-9) is satisfied, it
follows from (6.1-8) that in any finite region surrounding Sl..n

ko " - dS (6.1-12)

Si..n

It can be shown1 that when 0 is sufficiently removed from P, (6.1-12) may
be expressed as an absolutely and uniformly convergent series in powers
of OP(R ), viz02

4WV 0 e 0 a m Rm0 (6.1-13(a))

m-I

and, correspondingly,

4eV* - a* o (6.1-13(b))

m-1

Here a is a function of both and the orientation of PO but ism

independent of Ro . The expressions are valid when R 0 3R', where R' is

the greatest distance of P from any point of S1 .. n.

Let V' be a spherical surface centred upon P and of radius R1 > 3R'.

On substituting V* for U in equation (6.1-2) we obtain

an V in- dS -f.*(zTV -V (V+k**1d+ *2')¼C
Ef Tv T 1

(6.1-14)

where r' is the region bounded by S1 .. n and V.

But k2 - a 2 hence k - k* - to and 'k` . 2 so that equation (6.1-14)
reduces to

L V V 'n dS - 0 (6.1-15)

It

since (V2+*,2 )v,. 0 when (V24k)V _ 0.

1. F.V. Atkinson, Phil. Hag. 40, pp 646-7 (1949). See also Ex.6-3., p 584.
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On substituting (6.1-13(a)), (6.1-13(b) and their derivatives in (6.1-15)
we find that

ala2* + a2a 1* la3* + a3a1* a2a2*
2J (a2 )()axaI* + - + ) +CRl RI + j ---

(6. 1-16)
a -a2* aza1* 2(ala -a3al ) a2a 3 * - a32*

R + R 1+ 4 di
I R R1 Ri --- I

The terms within the round brackets are real while those outside them are
imaginary.

Since the equation holds for all finite values of RI > 3R' and since 'al.
al -- are independent of RI, the surface integrals associated with the

different powers of R, must be individually zero. Thus alai* dS - 0.

But since ,a11* is always real and positive, or zero, it follows that '

is zero for each surface element of ', ie for all orientations of the
radius vector from P. This leads to the requirement a2a 2 * - 0, whence

a., aV
a2 is zero for all orientations, and so on. Hence V and T are zero upon

Z' for all finite values of RI > 3R', provided that Sommerfeld's
conditions hold for k - +a or k - -a.

However, it can be shown2  that if both V and f- are zero upon any small
piece of a regular surface which bounds in part, or lies within, a region
in which (V2t u

2 )ý'- 0, as in the present case, then 7 is zero throughout
that region. Hence V'is zero everywhere outside S1 .. n.

The demonstration is therefore complete.

The corresponding uniqueness theorem follows immediately:

If (V2+Z)-' is specified at all points of the open region bounded
internally by the closed surfaces S..n and if V or 2n is a specified

function of position upon these surfaces, then V is uniquely defined
throughout the region, provided that it satisfies the relationship
(6.1-10) when the real part of Jk is negative or zero.

2. See Ex.6-2., p. 584, for an elementary approach. The rigorous argument
revolves around the analytic nature of the continuous solution of an
elliptic differential equation.

i.
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The results of this section may be extended directly to the complex

vector field F since V may be identified with the rectangular components

of F in turn.

6.2 Scalar Green's Functions for Helmholtz's Equation

On combining equation (6.1-2) with (6.1-7) we obtain

S ZSI..n£

p C (6.2-I)

- I ~~ *ir) (V2+`k2'i)- (V2 P'2l d

Then if (V2+k2)iU - 0 throughout T, the value of V at interior points of T
is given by

4Vo "G - V' dS - G (V2+k'kk)-'d (6.2-2)

S1..n T
where 0 + 1 jr

r

This relationship reduces to equation (3.8-2) when k = 0.

IJkrIf U1 can be found such that U1+ er (E B1 ) is zero upon S1 .. nZ, ie
if G1 satisfies the homogeneous Dirichlet condition,

4,t - V dS - GI (V2+'k2)'Y dt (6.2-3)
0 3n

S 1..nr T

In particular, if GI exists and V satisfies the homogeneous Helmholtz
equation, then V can be expressed at interior points of T in terms of its
value on the bounding surfaces. This result is consistent with the
demonstration in Sec. 6.1a that the specification of V over S I

1% 1. .n
renders V unique within T when (V2+k2)V - 0 throughout T, provided that
the value of k-does not admit of the existence of an eigenfunction. It
is evident that a, cannot exist in the presence of an eigenfunction.

GI Is known as Green's function of the first kind for Helmholtz's
equation; it is zero upon S Zn2  and satisfies (V2+k2)G 1 - 0 at all

I..-
points of T except the pole 0 where it becomes infinite like r. U (and

consequently GI) is unique for any given position of 0.
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Similarly, if U2 can be found such that U2 + e Gr ) satisfies the

homogeneous Neumann condition on S Zn1 then

4,rV 0 ~G2 andS- G, (V2+k2)'Vd, (6.2-4)

so that V can be expressed in terms of its normal derivative upon the
o

bounding surfaces when (V2 +k 2 )-v - 0 in T. G2 does not exist when the
corresponding sigenfunction exists.

When V satisfies the same boundary conditions as G and (02+k-2)' - 0, the
value of V at interior points of T may be expressed as a volume integral
alone. Thus equations (6.2-3) and (6.2-4) lead to

4wV -72-k2)
0 - (V2+GI V'dT (6.2-5)

T

and

4wt  - f G2 (V2 +k2 )'V dr (6.2-6)

T

It is easily confirmed that if G3  can be found such ay to satisfy
aG3

homogeneous mixed conditions on the bounding surfaces ie an + p G 0,
then

0w G3 3n + pV) dS G3 ~ V+ V dr (6.2-7)

S1..nE

Hence if V satisfies the same mixed conditions on S .. nE, V may again be
expressed solely as a volume integral.

When all surfaces of discontinuity are absent and (V2+4'i)ý is zero
outside a finite region of space, S I..n may be eliminated from (6.1-7)

and Z removed to infinity. Then at all points of space

4w - eJir a-~ Q ~ dS af1*~ (V +k )V dT
0 r T Vi r r

(6.2-8)

S_ .. _..i
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If, in addition, satisfies the Sommerfeld conditions at infinity it may

be shown3 that equation (6.2-8) reduces to

1 Jkr (.Z+2)d .2)4.V0 r -k T 629

T

for all locations of 0.

Since the function U is not invoked, the factor G in equations (6.2-5)

and (6.2-6) is here reduced to the 'characteristic function' - ejkr. Itr
is then known as a 'free-space Green's function'.

The proof of the existence of Green's functions for Helmholtz's equation
and methods for their calculation are beyond the scope of this document.

EXERCISES

6-1. Confirm equation (6.1-1)

6-2. Extend the analysis of Ex.3-18., p. 184 to show that if V and L are

zero upon a regular surface element which bounds in part or lies within
a region R, and (V2 4a 2 )V - 0 throughout R (a real), then V is zero
throughout R.

6-3. P is a fixed point in the vicinity of the closed surface S but not
coincident with it, and Q is a point of S. 0 lies outside S at a
distance R from P. If PQ - o, OQ - r and LOPQ - 0 show that

o

JR - (1-2pg cos *+.2g2)-) exp {(1-2og cos Ij+o2g2)•l}

1
where g - .

R
0

This expression may be expanded as the product of power series if
R > (1+V2)p. Prove this and deduce that0

jkr I jR ( j 2 d0 dI dS- (L+1 g+ TD bg2--)•0 + dig + d~gj-

where bl, b 2 -- are real functions of p and cos * and do, dl-- are

complex functions of ', P and cos *.

3. See Ex.7-11., p. 636.



Sec.6.3] HELMHOLTZOS FORMULA AND ALLIED TOPICS 585

Hence show that

ejkr j R -
-e e o\ 0 q.Rmr 0

M-I

where ýq is dependent upon the orientation of PO and the position of Q
a

but is independent of R 0o

Make use of this result to show that equation (6.1-12) may be
transformed into (6.1-13).

6-4. Let V have continuous second derivatives throughout T except in a

neighbourhood of the point P. Here it takes the form Vt +-i •

where V' is a well-behaved point function, a is a constant, and r' is
distance measured from P. Show that when 0 is not coincident with P,
equation (6.2-2) is replaced by

47r° - G 3V- G dS - (V2 +k 2 )vdT + 4,,a'
Tir V ,

Sl..nE T

where the volume integral is convergent.

6-5. Suppose that G represents G1 or G2 or G3 as defined in Sec. 6.2. Then
if (OO) is the value of the Green's function at the point 0' for a
pole at 0 and ý (00') signifies the reverse, show that
G (0'0) - Z (00').

6.3 Vector Green's Functions for the Equation: curl curl F - 1 2: -

When equation (3.7-2) is adjusted to exclude from the region of volume
integration a 6 sphere centred upon the point 0, and when complex vectors
replace real vectors, we obtain

-_ z C- - C. _ C_
(F x curl C - C x curl F).dS (C.curl curl F - F.curl curl C) dT

Sl..n, S 6 T--T6

(6.3-1)

Suppose that F is some vector point function which is well-behaved in T
and satisfies the relationship

curl curl F - k2F - 0 (6.3-2)

This equation holds if div F - 0 and F satisfies the homogeneous vector
Helmholtz equation:

(V2+I.)' (6.3-3)



586 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.6.3

Suppose further that

C - curl curl a7 (6.3-4)

where a is a constant vector field and

I Jkr (6.3-5)Y -r

Then at any point of T-T6

C - grad div ay- V2 ay - V(a.Vy) +i•2i" (6.3-6)

Hence

curl C - k2(V-x -)

and, from equations (1.16-5) and (1.16-6),

C.,

curl curl C - Z2 {C.V)Vy- a 2)

. •2 {v(v(.) + Z2-5}

. k2 C

so that curl curl Z - k2C - in T-T

Substitution in equation (6.3-1) then yields

-y - n

(Fxk(~xa.- V(-a.V3y)xcurl F.d-S - Z2ayxcurl 'F.d-S}

S6

(6.3-7)

S (Cx curl F - F x curl C).dS

S1..n£

By expansion of curl (a.Vy curl F) and scalar integration over S6 we
obtain

- V(a.Vy~xcurl F.dS - ya.V curl curl F.dS - k2a.VyF.dS

86 Sa S6

whence the surface integrals over S6 in equation (6.3-7) may be brought
into the form
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k2-. d'§ -.dS - F.V + V dS - ý(curl F)xdS}

ai~2. - VyF.d

S6

-j2j{F Vý-dýS - F-x (d-SxV--y) - 'ýXcurl IF)-d-S

S6

As 6.0 the final term vanishes for dimensional reasons and the remainder
reduces to

a2{ . - .ox iV-}

The second term within brackets is zero from (1.17-2) and the first term

may be shown to be 4wF - a result independent of the shape of S6 . Hence
O

from equation (6.3-7)

4ýkPF° 0 .-a (C x curl F - F x curl C).dS

S1..nZ

(6.3-8)

- - (C.dSxcurl F + dSxF.curl C)

S1..nZ

Here F is expressed in terms of n x F and n x curl F on the bounding0

surfaces. From the considerations of Sec. 6.1b it would be expected that

an expression for F could be found involving only n x F or n x curl F

since, in general, the specification of either upon S S..nZ renders F

unique in r.

Let C' be a vector point function which satisfies the relationship

curl curl C' - k -2' - O at all points of T. Then it follows directly
from equation (3.7-2) that_ - - -

0 - (C' x curl F- FX curl C').dS

S1..n Z
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By addition with (6.3-8) we obtain

4i 0 a - x curl F - F x curl G).dS (6.3-9)

S I..SI..nZ

where C + C'

If C1 can be found such that n x G, O on S I..n, then

4wF2 .a - - d ×F.curl G1  (6.3-10)

S I..SI..n£

If, on the other hand, CZ can be found such that n x curl G2 - 0 on
S .E, then

41k2O a - - .dS x curl F (6.3-11)

S I..SI..nZ

A determination of G, or G2 therefore permits of the expression of F .a
C- W 0

in terms of the tangential component of either F or curl F over S I.

G, and G2 are known as vector Green's functions for the equation

curl curl F - 92= (or for Helmholtz's equation). Certain physical
considerations suggest that these functions exist - at least for all real
and some complex values of k - in the absence of eigenfunctions, but
their evaluation in all but the simplest cases is of surpassing
difficulty. Other Green's functions exist corresponding to different

choices of C (eg alyor curl a-).

6.4 Surface/Volume Integral Formulations for Complex Vector Fields

When it is permissible to express F in terms of more than a single

boundary condition, the task of discovering a Green's function
appropriate to the surfaces under consideration does not arise and the

treatment becomes straightforward. Thus, we may express F directly in
bA =1 A ýNd 0

terms of surface integrals involving n x F and n x curl F by substituting

curl curl afor C in equation (6.2-7) and subsequently eliminating a.
However, for reasons which will become apparent later, it is easier, in

the first instance, to identify C with ay and return to the basic
equation (6.3-1). When this is done we arrive without difficulty at the
relationship
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{F-(yx1a).d§ - a'-curl ýF~d-s

S .. nr, S

a .y (curl curl F - k 2
F) dT - F.grad

T-t 6  T-t6

Upon expanding the triple vector product, interchanging dot and cross,

expanding div (F div a~y and applying the divergence theorem we obtain

a. {('F F•.V; + dSx'• curl F + + F.dSI

S1..n Z S6
(6.4-1)

- a. {'-(curl curl F - -2F) + Vydiv F} dT

T -T 6

Since a is arbitrary, this leads to

(-F- (dý-x-y + ýF'y .d-S + dS7sy curl F

S1..nE, s6

= " {(curl curl F - k
2

F) + 7 div F) drJ

"which, on taking limits as S shrinks uniformly about 0, yields

4°rF 0 {V'ýx(dCS-) - d•§x7 curl V- V dS.aF}

Sl..nI

(6.4-2)

{Y(curl curl F - k'F + V div F} dr

T

Transformation of the right hand side of equation (6.4-1) into

a.! (.-.I (V2 +-2)t + grad ('div )) dr
J

t-tI
.7i
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and application of equation (1.17-5) leads in turn to

4wF 0 Vc~~F d- dX7 curl 3F' - Vry dS.~ + 'y div ZF d-Sl

S1..nE

(6.4-3)

- f7 (V2 )F d-r

Alternatively, the volume integral of equation (6.4-1) may be transformed

by expanding curl (' curl F) and applying (1.17-3). We then obtain a
generalised form of the grad-curl theorem, viz

F 0 div 3F Vy d, -j-.S Vy +f (curl xVy dT

T Sl.r Tr
I. 1..n

(6.4-4)-f ( v'i2f _
CS Vy-VfyFd

S1..nET

When k - 0 this reduces to equation (4.17-4).

We now proceed to obtain a set of integral expressions for (curl F) by

identifying C in equation (6.3-1) with curl ay-

In this case

curl C - grad div jSk'

and

curl curl C . k- C

Substitution in equation (6.3-1) together with surface integration of the
C-

expansion of curl (F div Z) leads to the relationship

4w(curl 0 {V•(dg x curl 7) - Vi'dS.curl - k y(dSxF))

S1..nE

(6.4-5)

- f Vj(curl curl F d-
T
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Volume integration of the expansion of div (C div F) allows (6.4-5) to be
brought into the form

4w(curl F) - 7viX(d-S x curl F) - V Sd•.curl F- k27(dxF) + div f (aSxý-)

SI1..n I

(6.4-6)

+ 2 -(22) 2:d

T

Expansion of curl a and scalar surface integration over Sl..n E yields

(curl F).dS - dSxF.V

S1..nE S1..n

hence

V• (curl F).dS - (dSxF.v)"

S1..n£ S1..nz

so that equation (6.4-6) may be replaced by

4n(curl F)o " 0 (Vyx(dS x curl F) - ((dS-F).V)Vy-k 2 •(dSxi) + div F (dSxVy)}

SI. .nz

(6.4-7)

4+ f V x (V2
4k

2 )F dT

and equation (6.4-5) may be replaced by

4,r(curl F) {VYx(dS x curl F) - ((dSxF).V)Vy- k (dgxF))

S I1..n
(6.4-8)

- f V~x (curl curl F- k2 F) d(

F)d

Students of the theory of dyadics will recognise that the terms

'S ((dS xF) yV) V+k2,7(dSxF)

V.
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may be written in the form

= jY2 j(d-X +~ k2) Ty-(d-sxF)

- '2 f.(dSxF)

where I is the idemfactor 1i + jj + kk.

7 is known as Green's dyadic.

Since it is not proposed to make use of dyadic algebra (as distinct from
dyadic notation) in the present work the reader need only remember that

for a well-behaved point function V

(V.v)y+k
2yV may be replaced by '2'.V or k2 V.r

and (6.4-9)

Vyx V may be replaced by (Vxr).V or - V.(Vx?)

In these circumstances equation (6.4-8) becomes

4r(curl F)o " {(Vx?).(dS x curl F)-k 2 f.(dSXF))

S I..

(6.4-10)

-f (Vx?).(curl curl F - -k2) dT

T

We now return to the case considered in Sec. 6.3 where C was identified

with curl curl y, but we no longer demand that curl curl F - k-4F - 0
throughout T.

After substitution in equation (6.3-1) and some manipulation, we find
that
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S{'•a• 2Vyx(FxdS) - 7(a.Vy x curl F.dS- i2curl F)xd

Si..n Z S6

(6.4-11)

- ] {V(a i);k.• 2Q. (curl curl F F) dT

T-T 6

Now

{-V(a.iY) x curl F.dS - a. kZ- (curl F)xdS}

sl..nE

= {(a.V)V•.d-S x curl F + a.2 (dS x curl F))

S InS1..nE

= a.• {((dS x curl F).V)V +k 2 yV(dS x curl F)}

1 1..nE

since it may be shown by expansion in rectangular coordinates that

2- a.(Sv.v)Vc)

In dyadic notation this becomes a.p 2 ý .(dS x curl F)

S1..nE

It was shown in Sec. 6.3 that l°.

-V(-a.VýY) x curl ýF'-dS -~a.Vy curl curl F.dS

S S
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hence equation (6.4-11) transforms into

f (2iyx(xdS) + Vr curl curl ýKdS _'k2y (curlF)xdS}

S 
6

1 { 22 x(dSxF) curl F))

Sl..nE

+ f k2f.(curl curl 3 - k2F) dt

T-T 6

The surface integral over S6 may be written as

[k2(F dS.Vy - Vy F.dS - Fx(dSxVY)) + Vy curl curl F.dS - k 27(curl F)xddS}

S 6

As S6 shrinks uniformly about 0 the final term vanishes for dimensional
reasons and Fx(dSxV)+O in accordance with equation (1.17-2). Of the

S6

remaining terms, the limiting value of p dS.Vyis independent of theS6

shape of S6 , but that of - Vy S.d is not. The volume integral is

S6

consequently non-convergent and the equation takes the form

a Lim L - k2 )d
47rF 0+ S'.Ok jý (curl curl3'-i)._

{(Vxr).(dSxb- - ?.d- - curl F}(6.4-12)

S E '

SI..nr

+ Limf ?.(curl curl F- kF) dT

T--T

For the particular case where S' is spherical and centred upon 0 this
becomes
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4sF° {(Vxw).(dSX - .(d curl F)}

S I..SI..n£

(6.4-12(a))

Lir .41r7.(curl curl F - 2 :d - curl curl F- 23)

The non-convergence of the volume integral in equation (6.4-12) derives

from the presence in the integrand of 7 as a multiplying factor. This
behaviour does not occur in equation (6.4-10) where the dyadic takes the

form VxF, nor indeed in any of the non-dyadic equations (6.4-2)
to (6.4-8), as evidenced by the fact that in each case the limiting value
of the surface integral over S6 is independent of the shape S6 .

Finally, we note that equation (6.1-7) leads to a particularly simple

form of expression for F within r, viz

S- dS- (V2+k2)f dT (6.4-13)

S 1_S1..nZ

EXERCISES

6-6. Let C - ay- By proceeding in the manner of Sec. 6.3 show that

4wFo.a = (C x curlF - F x curlC - F div C).dS

S1..nz

+ f (C. (curl curlF - k 2F + div F div C) dr
T

Hence conclude that if C' satisfies (V2 +- 2 )C' i O in T, and
m- =-

n x curl(C+C') - 0 on SlnE, then F may be expressed in terms of
A C.e A66 :-... ':1 - ý
n x curl F and n.F on SlE and curl curl F - • 2  and div F in T.

-i
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6-7. Let C curl ay. Show that

4w (curl F)o.a - (C x curl F - F x curl C).dS

S1..nZ

+ .(curl curl - k2F) dw

T

Hence conclude that if C' satisfies curl curl C' - k C' = O throughout T
'A Ais C. Aý Cs,

and n x (C+C') or n x curl (C+C') is zero over S 1..n then curl Fmay be

expressed in terms of n x F or n x curl F over S l..n and

curl curl F - 1 2F in T.

6-8. A region T' is bounded by a regular closed surface S'. A point 0 is the
centre of a spherical surface S,' lying within r'. If r is distance
measured from 0 show that

-•-d 1 4.+2 Lim

SdS - 4w + k61'0 f'd T

S o T I- T I

where y - ejkr and the positive sense of the normal is directed into
T'. r

Hence show that if S' shrinks uniformly about 0

Lim f V dS = 41
J~so

6-9. Confirm equations (6.4-3) to (6.4-6) and (6.4-11).

6-10. Show that equations (6.4-3) and (6.4-13) are identical by making use of

(1.17-13) with T replaced by TF.

6-11. Show that equation (6.4-11) may be transformed into (6.4-2) by applying

the divergence theorem to the expansion of dii, {a.V'(curl curl F -k2 F))



Sec.6.5] HELMHOLTZ'S FORMULA AND ALLIED TOPICS 597

6.5 Time - Harmonic Fields and their Representation by Complex Quantities

6.5a The time-harmonic scalar field

Let V be a scalar point function which takes the form

V - V, cos(Wt+6) (6.5-1)

where V' and e are functions of position and w is a constant.

V is said to be time-harmonic.

Then

V - Re V'e j(wt+e) I - Re {VeJwt} (6.5-2)

where

V = V' eae (6.5-3)

Vis a complex scalar function of position alone and is known as a space
phasor.

If U - Re ge } where -- gej, then U represents a scalar field whose
maximum value at any point is g times that of V and which leads V by the
angle a. The factors g and a may or may not be functions of position.

Space and time differentiation are straightforward. If V is well-behaved
in space and time, we have

v - Re x Ve (V1 cos Ot - V2 sin wt)

ax axc

where

V- VI + JV2

hence

3V 3Va aV2
S" -7 co wt-- sin wt

Re {LZ ej

whence

grad V * grad VI cos wt grad V2 sin wt (6.5-4)
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or

grad V - Re {(gradV)e } (6.5-5)

and

=~ Re ((V2V~ei~tl

Similarly

_V = t_ Re {VeJt} . - (Vlw sin ut + V2W cos ut)

at at

or

at = Re {JwVeit} (6.5-6)

and

a2v 2 w=3 - Re f-w ve It

Suppose that

Then

Re(V2-+ W-V)eJwt 0

But since this equation holds for all values of t it follows that

V2' +• W 2 oV

Thus for each real field relationship there is a corresponding space
phasor relationship. The transformation of the real into the complex
form is effected simply by the substitution of the complex scalar for the
real scalar, and multiplication or divijion by jw when time
differentiation or integration is indicated.

We will have occasion in Ch. 7 to consider the complex form of the
retarded scalae function.
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Since

V - V1 coS Wt - V2 sin wt

(V] - r) COS (t -)V 2 sinw )

or

[V] - Re {Veiw(tr/c) = Re {•I- r/c ejetl (6.5-7)

From equation (6.5-4)

[grad V] - grad V, cos w(t- -grad V2 sin w(t E

or

[grad V] Re {(grad 7) e-jwr/c e jt} (6.5-8)

and from (6.5-7)

grad [V] = grad Re {Ve-ir/c ejt}

or

grad [V] = Re {(grad Ve- J er/c1eJwt (6.5-9)

Finally,

a--- . Re {JwVe-ir/C e21t} (6.5-10)

Fd7-i atv

6.5b The time-harmonic vector field

Let the vector point function F be defined by

F - iF' coa(wt+e ) + 3F; cos(wt+e ) + kF' cos(wt+e) (6.5-11)x y y z

where F', F , ox, 0 , 0 are functions of.position.
x y 1 z z

This is the most general form of expression for a time-harmonic vector
field, since each scalar component has its individual amplitude and
phase.

I
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We may replace (6.5-11) by 4

F = Re LiFeiJ(wt+ex) + j1iei(wt+6y +

or

F - Re {•ejwtI (6.5-12)

where

i . FT ejex + IF' eJy + kFz eJ'z (6.5-13)
x yz

F is a vector space phasor. We may write

F - F1 + jF2  (6.5-14)

where F1 and F2 are of fixed orientation at any one point and are given
by

f1  - F' cos 6 + F' cos 6 + W' cos e
x x -y y z z

(6.5-15)

7 2  - 'IF' sin e + jF' sin 6 + WF' sin 0x x -y y z z

It follows from (6.5-12) and (6.5-14) that

f = f1 Cos Wt - f2 sin wt (6.5-16)

so that, in general, the end point of F traces out an elliptical path

with time. F is then said to be elliptically polarised in the plane of

F1 and F2 .

There should be no confusion between the unit vector 3 and j - (-I)i.
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When F1 and F2 are of equal magnitude and mutually perpendicular, the end

point of Y traces out a circle with a constant angular velocity w, and F
5

is said to be circularly polarised . It follows from (6.5-15) that this
condition obtains when the following simultaneous equations are
satisfied:

F'2 sin 28 + F' 2 sin 2e + F' 2 sin 20 - 0
x x y y z z

(6.5-17)
F 2 cos 20 + F' 2 cos 28 + F' 2 cos 28 . 0

x x y y z z

When F1 and F2 are everywhere collinear, F maintains a fixed, but not
necessarily equal, orientation at each point and is said to be linearly
polarised. From (6.5-15) the required condition is

tan 0 - tan 0 - tan 0

x y z

in which case

- A 2+2iA 2 2 24
F - F, (F1+F)2 cos(wt+o) - 1  , (F 2+F' +F2 cos(wt+e)

x y z

or

F = F' cos(ut+e)

where

tan tan x tan 8y tan (z¼ e0 + +
x y z 2 2

IL We see also that

F = F' e

This simple relationship obtains only in the case of linear polarisation.

Since

Re {-F ejwt} - Re {g F ej(at+t)}

5. Polarisation in this sense has, of course, no connection with
7 polarisation as treated previously.
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where

jag " ge

it is evident that multiplication of the vector space phasor F by 9

increases the magnitude of F by the factor g and advances it in time by

c/w, but leaves the shape of the polarisation ellipse unaltered.
Similarly, differentiation with respect to time has no effect on the

shape of the ellipse but increases its size w times and produces a time
advance of w/2w. On the other hand space differentiation, in general.
alters both the shape and size of the ellipse.

As in the scalar case, each real field relationship involving space or
time differentiation is paralleled by a vector space phasor relationship.

We have also

divF - Re {(divF) ej}

[div -] - Re {(div F) -jr/c ejt 1

=! ReJwr/c jut
div F] Re {(div Fe ) e

with similar expressions for the curl, and

- Re {Jwe5iti

[ -F] - Re {Jw~e-ur/c ejtXit -T at

6.6 Time-Averaged Products of Time-Harmonic Quantities

Let

V - Re {Vej I where V I V1 + JV 2  (6.6-1)

Then it is easily seen that

V - Re ({*e-jwt} where - V1 - JV2  (6.6-2)

It follows that

V - j Re (Ve ~+Ve~ jl - i (VVeiwt+fV*e"iwt) (6.6-3)
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Similarly, if

U - Re {uei4tl

then

Ui j (et3 + O*e t

and

.- 2 "' 2jut - '•*'+ -2jwt
Vvue + VU* +V*U + V*U*e

The time average of the first and last terms within brackets is zero so

that the time average of VU is given by

V] - j (VU* + V*U) - jRe {VU*} - Re {V*U} (6.6-4)

Hence

V- - (-VV') - ½ Re {V'V*) - (V2+Vz) (6.6-5)

We may proceed in a similar manner with vector quantities. Thus, if

F Re {Fejtl1 where F -F + JF2 (6.6-6)

then

j~t

Re {'F*e-et} (6.6-7)

and

F I(Fei~t + F*e-jrw) (6.6-8)

Similarly, if

Cd Re {eJwjt} where G - G1 + JG2

then

Z - (Ge, + G*e-

I . . . . . . ..i
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and

F.G - | (F.G* + F*.G) - • Re {F.G*1 = • Re {F*.G}
(6.6-9)

( ½ (FI.'a + F2 .G2 )

Hence

F.F - (F.F*) (F2+F2) (6.6-10)

Further,

FxG - i (FxG* + F*xG) - j Re {FxC*} -* Re {F*xG)
(6.6-11)

- ½ (FIxG1 + F2 xG2 )

6.7 Uniqueness Criteria for Time-Harmonic Fields

6.7a The time-harmonic scalar field

Uniqueness criteria for scalar fields of unspecified time dependence have
already been discussed in Sec. 5.4a. When consideration is restricted to
time-harmonic fields a rather different set of permissible conditions
emerges.

Suppose that a scalar point function V' has continuous second space
derivatives within the region R bounded by the surfaces S1..nE, and that

its associatedd space phasor is represented by Vt . Then from (6.1-1) with4primed and U- V'* we see that

*n dS J V'* V2V_ dT + grad V'*.grad Z' dT

$1..n E

f '* (V2V -pV'-JwqV'+rw2V') dr (6.7-1)

T

+ j grad V'*.grad V' dT + f (p+jwq-rw2 ) V'V'* dT

T T

where p, q, r are real functions of position, or constants.
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Let V, be such that
6

aVI  a2V 1(1) V2 VI - pV1 - q - - r T57 - f (x,y,z,t) in R

av1  (6.7-2)

(2) VI or - g(xc,y,zt) on Sl..nE

and let V2 satisfy the same conditions.

On writing V1 - V2  V' we obtain the homogeneous equations

V2 r- pV' - q - r - 0 in R (6.7-3)

and

V' or LV--- -0 on S Z

so that

72V, - pV' - jwqV' + rw2V' - 0 in R

and (6.7-4)

V or 0 on S o E

an I..n

Substitution in equation (6.7-1) yields

grad VP*.grad Ve dr + f (p+Jwq-rw2 ) V'V'* dr - 0

•Since the first volume integral of the above equation and the factor
V '0* are real and positive, or zero, it follows that if q is everywhere
positive or everywhere negative in R, V must be everywhere zero, in which
case V1 - V2 throughout R. If q does not satisfy this condition but
p-rW2 is everywhere positive in R, the same result obtains.

When p and q are zero and r is a positive constant (ay the proof of

uniqueness is seen to fail. This is the case, discussed in Sec. 6.1a,

where the Helmholtz equation reduces to V2 + -4 '- 0 and where

k(- ± may be an .igenvalue. The corresponding real equation is

6. In physical applications the coefficients will, In general, be constant,
and one or more will be zero.
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-2V_ . dal V - f(xyz.t)

and is known as the undamped wave equation.

Nevertheless, the considerations of Sec. 6.1c demonstrate that VI

vanishes in the exterior case if RV' is bounded and R - J )0

uniformly in all directions as R-. Hence V will be uniquely determined
in the exterior case provided that

(1) V2 V - c .t is a specified function of position and time in R

(2) V or T is a specified function of position and time upon S..n

(3) RV is bounded, and either R (R - iat• or R +\3R

approaches zero uniformly in all directions as R-•,.

6.7b The time-harmonic vector field

The results for the scalar field are applicable to each of the
rectangular components of the vector field, whether linearly polarised or

not, so that the specification of V2 F - pF_- q t r throughout R

together with the specification of Fr anupon S1..nZ will renderorupoogeiltrndrr

unique within R provided that p, q, r satisfy the conditions laid down in
the previous sub-section.

For the exterior case with p - q - 0 and r = the Sommerfeld conditions
become

RF bounded; R + c 0

uniformly in all directions as R-.

Alternatively, by proceeding along the lines of Sec. 6.1b, we find that

will be unique within R provided that during one time-harmonic period

(1) div F is specified throughout R

(2) V2 F pF - q a- r a is specified throughout R
A A

(3) n x F or n x curl F is specified upon S .. nZ

and provided that p-rw2 is everywhere positive, or q is everywhere
positive or everywhere negative in R.



CHAPTER 7

EXPONENTIAL POTENTIAL THEORY

7.1 Introduction

The exponential potentials of point, line, surface and volume sources are
derived from the unretarded potentials of Ch. 4 by the substitution of

1 e for 1. where k is a real or complex constant. The correspondingr rj

scalar and vector source densities are treated as complex and time-
invariant.

In these circumstances it is possible to proceed as in Ch. 4 to develop
expressions for the gradient, divergence, curl and higher-order
derivatives of the appropriate potential functions. The procedure is
straightforward and has already been required of the reader, in some
measure, in the solution of certain exercises appearing in earlier
sections. We may take the subject further by postulating a nexus between
the scalar and vector source densities along the lines of
equations (5.17-15), (5.17-18) and (5.17-19), viz

div J = jkc0

divs K + AJ.n = jkca

dI

T- + AK.n' =jkcX

It is then possible to show that

div A - jk

where is the scalar potential and A the vector potential of a mixed

source system involving X, •, and J, K, I, P, M. Further, if we define

E - -gradf + j' A

B - curl A

we can develop sets of equations which are closely allied to Maxwell's
equations and the associated boundary relationships.

607
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While this type of self-contained treatment of the exponential potentials
is possible, their primary value lies in the considerable simplification
which they can introduce into the treatment of the retarded potentials of
time-harmonic sources. For this purpose the complex densities are
identified with the space phasor equivalents of the time-harmonic

densities, as discussed in Sec. 6.5. and k is made equal to - -. Thus

where
cck --

and

Similarly

-- d• - Re uejr) - Re E'-t e

rr r

TT T

ga-d LP r ga Re .Jk dT eewe rd 2Jkr dT e w

It is seen that in carrying out space operations upon the retarded
potentials it is necessary only to perform these operations on the
equivalent exponential potentials and to extract the real part of the

final expression subsequent to the restoration of' the factor ejt

Time differentiation and integration involve multiplication end division
of the exponential potentials by iw followed by the same procedure.

With this interpretation the nexus equations set out above appear as
logical consequences of equations (5.17-15), (5.17-18) and (5.17-19),
rather than as independent postulates.

While this particular approach to retarded potential theory involves
considerably less effort than that required in Ch. 5 because of the more
mechanical mature of the accompanying manipulations, it should be borne
in mind that its application is restricted to single-frequency systems.
Whether or not a Fourier extension to non-repetitive time functions is
permissible will be dependent upon the posstbility of accommodating an
infinite set of values of k in the case under consideration. Indeed, the
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single-frequency treatment raises some philosophical difficulty when a
bounding surface lies at infinite distance because of the infinite time
required for the establishment of the time-harmonic variation there.

We will proceed to treat the exponential potentials independently of the
retarded time interpretation - at least in the first instance - because
the restriction of 7 to a real and nejative value is unnecessary and
because, in any case, complex values of k are required in the exponential
solutions of the general form of the Helmholtz equation. Since the
procedure largely follows that presented in Ch. 4 it will be unnecessary
to dwell overmuch upon detail.

7.2 The Scalar Exponential Potential and its Derivatives

7.2a The point singlet source

For a source of strength - located at P we have

or (7.2-1)

00- 31(rei'p

where R is distance measured from P and r is distance measured from 0.

Then

(V~ a _i' I + j'~ ekJ,={
d0O R-" aJP

(7.2-2)

and

(V$ I•-• d (R2 $] - -R- ((_- + jk_ R)eji . _

so that

(V2+k2)0 - 0 outside the source. (7.2-3)

7.2b The point doublet source

Suppose that the doublet is located at the origin of spherical
coordinates and aligned with the positive sense of the z axis (8-0).
Then it follows from Sec. 4.1 that

I =JkR1  - cos e I eu 0  (7.2-4)

0
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Then

. pcoo , 3 +R1+2 a 3 -

On bearing in mind that p - (R p cos 8 - e p sin e) we find by collection
of terms that

POO - 3 p cos e jk p 3 jk p cos e R k 2 p cos 8 e" JkR
oh= 3  R3  R2 + R2  + R Jo

(7.2-5)

and this may be written in the general form

3p.i r - 3jp + 3ikp.rr k2 p e jkr (7.2-6)
rr r2 + r3 )

Whereas only inverse-cube terms appear in the expression for the non-
exponential gradient in Sec. 4.6, the present expression includes, in
addition, inverse-square and inverse-first-power terms. This behaviour
carries over into higher-order derivatives.

As would be expected from (7.2-3)

(V2+k2) = 0 outside the doublet (7.2-7)

This may be demonstrated by applying (2.6-8) (with R replacing r) to
(7.2-4), or by working in Cartesian coordinates with transposition of

partial derivatives along the lines of the derivation of V2  E.V ds
Jr

on p. 263.

The interpretation of the exponential potential of singlets and doublets
in terms of their retarded counterparts calls for some comment.

Expressions (7.2-1) and (7.2-4) imply the presence of one or two fixed
point sources of time-dependent magnitude. Since discrete sources of
this type have not been admitted to the model on which the present work
is based, it is evident that the singlet source must be identified with
that point of a line source where the current phasor I is discontinuous.
The doublet potential, in turn, may be taken to correspond with the
retarded scalar potential of the end points of a Hertzian dipole
(Ex.5-103., p. 572). However, reference to (5.13-9) reveals that it may
also be interpreted as the complex form of the retarded potential of a
point source pair having a time-dependent vector moment in virtue of
oscillatory motion.
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Correspondingly, the vector exponential potential of a doublet is taken
to be the complex form of the retarded potential of a Hsrtzian dipole or
of an oscillatory pair of sources as given by equation (5.13-10).
Similar considerations apply to the exponential potential of a whirl.

7.2c Line singlets and doublets

For a simple line source of density A

* - Ads (7.2-8)

As in the non-exponential case, the potential becomes logarithmically
infinite as the source is approached.

At exterior points

grad f - - f Vyds (7.2-9)

div grad A V2-ds - _2 "• ds

rF r

or

(724k2) f X ds - 0 (7.2-10)

r

For a line doublet of scalar density L, in the notation of Sec. 4.2,

'* -j L (n'.Vy) ds (7.2-11)

grad* j L (n'.V)Vyds (7.2-12)

r

div grad L = j (n,.V) 2ds - k2 J (n'.Vy) ds

r r

or

(V2 +k 2 ) jL (;'.VY) ds - 0 (7.2-13)

rI '

A - - -- ---------- . .- --------
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7.2d Singlet and doublet surface sources

The exponential potential of a simple surface source of density - is
given by

* y a ] dS (7.2-14)

The potential is everywhere convergent and continuous since the density
-jkr

of the equivalent non-exponential system (viz ece ) can be split into
real and imaginary parts, each of which may be treated by the arguments
of Sec. 4.3.

grad f - f o Výy dS at points outside the surface (7.2-15)

Because ae.jr is continuous wherever ' is continuous and approaches - as
r+O, the increment in the normal derivative of the potential on passing
through the surface at an interior point where 3 is continuous is related
to the local surface density (for a common arbitrary sense of the normal)
by

A = - 4ira (7.2-16)

We have also

div grad a f V 7 yVdS - .kzj -a dS
S S

or

S(V2 +-k2 ) f 7'dS - 0 at exterior points (7.2-17)

S

For a normally-orientated surface doublet of scalar density _v

f - J (dS.Vy) (7.2-18)

S

where the positive sense of S is taken to correspond with the positive
sense of the doublet moment.

As in the non-exponential case there is a discontinuity of potential of
4wp on passing positively through the surface at an interior point where
U is continuous.

grad * - ( J CdS.V)Vy (7.2-19)

S
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The normal derivative of the potential approaches the same value from
either aide (for a comon sense of the normal) but, like the potential
itself, is undefined on the surface.

div grad *• = (dS.V)V2' ._ Z2 f' (dS.Vy)
•SS

(7.2-20)

or

(V2+-k2 ) f u(dS.Vy) - 0 at exterior points.

7.2e Volume sources

For reasons discussed in Sec. 4.4 the exponential potential of a volume
source of piecewise-continuous density is everywhere convergent and
continuous. The gradient of the potential is likewise convergent and
continuous (see p. 278).

The field-slipping technique developed in Sec. 4.8 continues to apply, so
that in numerous instances the expressions for the derivatives of the
exponential potential differ from their non-exponential counterparts only
in the substitution of ýy for 1.

r

However, since V2  
r ) 0 and V

2
ý.. _Z2y' (rxO), terms involving 1

2 
may

appear as additional components in the exponential expressions. The
various formulae have been brought together in Table 9, p. 614. The
derivatives of the cavity potential, which have not been included, are
identical with the corresponding derivatives of the complete potential at
points outside the source, with T and S .. nZ replaced by T-T6 and S .. nI,

S as required. (This also holds for Tables 10 to 12.)

The potential function j P.VydT and its derivatives are set out in

Table 10, p. 615. In all cases the volume integrals are convergent
unless expressed as limits, in which case r' replaces T and S' replaces
S"

The derivations of the various expressions in these and subsequent tables
are left as exercises for the reader, who should endeavour, in
particular, to develop the multiple derivatives of the partial potential
by alternative methods.
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TABLE 9

The Scalar Exponential Potential Function f ypdT and its Derivatives

(1)

pot -P f p dT (interior and exterior points of T)

(2)

partial pot -P= y p dT (evaluated at centre of moving 6 sphere within T)

T--T6

(3)

cavity pot - y P • dT (defined throughout fixed 6 sphere within T)

T-T8

(4)

grad pot- y f gr •• yra, s

T S 1..nE

-- j y'dT (interior and exterior points of T)

(5)

grad partial pot -P y grad dT- y ds

T-T S 1  E

STT S6

(6)

V2 pot - - + pot V2d (interior and exterior points of T)

S1..nE

(7)

(V2+'2) pot -= 0 at exterior points of T

(8)

(V24Z-) pot -_ -4wr' at interior points of T

(9)
V2 prtil ~ - ~ m~ -,)dS + partial pot 721,

1..n
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TABLE 9(CONTD.).

(10)

(V2 -2) partial pot - £ -• a_ dSan+k dS

S6

TABLE 10

The Scalar Exponential Potential Function/ P.V dT and its Derivatives
J(1)

SP.Vy dt - / (- div P) dT + P.d9 (interior and exterior points
J J 4of T)

T T SI .. nr

(2)

partial I P.V7 dr = y (- div P) dT + ' F.dS (evaluated at centre
4 J of moving 6 sphere

T-T T-T S..n , S6 within T)

(3)

cavity P.Vy dT y (- div P) dT + y P.dS (defined throughout fixed
1 6 sphere within T)

Z-T6 T-T'6 S Z, S

(4)

grad P.Vy dT

T4

Vy div P dT - P.dS (interior and exterior points of T)

T S 1..nE

(i f 7x curl P) dr fV:ýx (d-Sip') + j2 ~PdT

T S1..n r

curl (PxV;) d, +k 2 f P dT (exterior points of T)

T T

(P - .V)Vy d¶
T



616 FIELD ANALYSIS AND POTENTIAL THEORY

TABLE 1O(CONTD.).

(Vi'x curl F) dT- V -j x (d-SxP) + -c
2 /~ r+4

T S ~1..nET

culi(FxVy T+ dT +~ 4w (interior points

! dT+ d P Tý

Li.O (P.V)Vy dr+ i. uO~

(5)

grad (partial) PV'd

Vy VdivP dr - y VP. d§ + P x (d§xVy')

T-T 6  S E S

-j(Vy x curl F) dT k p PdT (dISXP)+

T-r6  '-T 6 S E S

-- curl (partial) f(PxV'y dT + k2 ] P dr + fP dS.Vý'+ Tx (dgxVý)

- -fPý.V)V,ýdT + d-9P.Vy'

(6)

(72+'k2 ) j .Vyi dT 0 at exterior points Of T

(7)

(2 4 ) fk -.y-d 4w div P at interior points Of T

(8)

(V2'k2) (partial) jP.V dT- {div Pd-S.V~' cul).d I+yPdSj

T-T S
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7.3 The Vector Exponential Potential and its Derivatives

7.3a Line singlets and doublets

Whirls

The exponential potential of a line singlet of density I (not necessarily
tangential to the contour) is given by

A = j ds (7.3-1)

r

At points exterior to the contour

div A - - I.Vy ds (7.3-2)

r

grad divA J (I.V)V ds (7.3-3)

r

curlA - j IX Vds (7.3-4)

r

curl curl A = 2 y I ds +J (I.V)Vy ds (7.3-5)

r r

(V2+k) 2 y I ds - 0 (7.3-6)

4r
The corresponding expressions for a vector line doublet, in the notation
of Sec. 4.12a, are

A- L (n'.Vy) ds (7.3-7)

div A L - 7 (tj.)(n'-Vy) ds (7.3-8)

r

grad div A- (L1 .V)V(o'.VT) ds (7.3-9)

r
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curl A = Ll x V(n'.Vy) ds (7.3-10)

• f ,.. AF _
L1('V)d. + (Lj.V)V(n .Vy) s (.-1curl curl A = k2  L ,.) . ) ds (7.3-11)

r r

(V2+k2> ] Ll (n'.V-) ds - (7.3-12)

r

A closed, uniform, tangential line source gives rise to the vector
potential

A - 91 ds ar I I d y~

r r S

so that the vector potential of a whirl is given at exterior points by

A x Vr (7.3-13)

where

m = Lim IST--
S '0

Then

div A - 0 (7.3-14)

grad div A - 0 (7.3-15)

-"S. =- + gcurl A = (m.V)Vv+y 2 y m (7.3-16)

curl curl A - k2(Mx V') (7.3-17)

(V2+•) �A 0 (7.3-18)
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7.3b Singlet and doublet surface sources

The exponential potential of a simple surface source of density K (not
necessarily tangential to the surface) is given by

A - j 7KdS (7.3-19)

S

A is convergent and continuous everywhere.

The increment in the normal derivative of A, on passing through the

surface at an interior point where K is continuous, is related to the
local source density (for a common arbitrary sense of the normal) by

LA
3A - -4wK (7.3-20)

We have also, at points outside the surface,

a -e
div A - K.VydS (7.3-21)

S

A div A - -4w n.K (7.3-22)

curl A - -x V•dS (7.3-23)

S

a curl A - -4w (nxK) (7.3-24)

grad div M-f (K.V)VjýdS (7.3-25)

S

curl curl A - 2 j -KdS - (K.V)V'dS (7.3-26)

S S

(V2 +k 2 ) j 'dS - 0 (7.3-27)

S

h.
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When K is tangential to the surface it follows from (2.12-27a) that

divs K dS - K.n' ds

S r

But from equation (2.12-7)

-- -

divsY y •divs K+K.grads

and from equation (2.12-12)

grad -Y grads 3+ na-

hence

div KdS - - K.Vý'dS - - K.grads - dS
SS S S

(7.3-28)

- j div sKdS- K.n' ds

S F

In the notation of Sec. 4.12b the exponential potential of a vector

source doublet of density 41 is given, at points outside the surface, by

A - 1(g • (7.3-29)

whence

div A - (7.3-30)

S

grad div A - (uj.V)V(dg.Vy (7.3-31)
S

curl A - j u V(dS.Vy (7.3-32)

S
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curl curl A - ka ui (d§.V + (j.V)V(dS.Vy) (7.3-33)

S S

(V2+;k f 2) (dg.VV) - 0 (7.3-34)
S

7 .3c Volume sources

The comments made in Sec. 7.2e in connection with the scalar potentials

y p dr and P.Vý dT apply equally to the treatment of the

corresponding vector potentials, and need not be repeated. Formulae

relating to I ' dT will be found in Table 11 below, while the function

A dT and its derivatives are set out in Table 12, p. 625.

TABLE 11

The Vector Exponential Potential Function J dT and its Derivatives

(1)

pot J y ] J dT (interior and exterior points of r)

T

(2)

partial pot J - J dr (evaluated at centre of moving 6 sphere within T)

T-T 6

(3)

cavity pot J y j J dT (defined throughout fixed 6 sphere within T)
°• t T-T6

(4)

div pot J y div J dT -¶ j.dS

T S l..n r

(interior and exterior points of T)

J.Vy dT
- Jyd

"i~
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TABLE 11(CONTD.).

(5)

div partial pot J - div J dT - ' J.dS

J- S
•-r6 $1..n£

= - . dT + y J.dS

-T6 S6

(6)

curl pot J y , curl dt - y¥(dSxJ)

(interior and exterior points
of T)

= x Vy dT

T

(7)

curl partial pot J y curl dr - 0 y(dSxJ)

T-T S1..n

- x V dr + j3 -(dSxj)

T-T6  S6

(8)

S(V 2 +k 2 ) pot J = - at exterior points of T

(9)

(V2 +k2 ) pot J - -4rJ at interior points of r

(10)

Spot)' - • - 3n V2  (interior and exterior points of T)

S1..nz

(11)

V2 partial pot J - ( n- 31) dS + partial pot V

S1..nz
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TABLE I1(CONTD.).

(12)

(V2-4i2) partial pot J- J dS

S6

(13)

grad div pot J

J (- div J) V- d, + VYJ.dS (interior and exterior points of T)

S1..nE

* SI • "n "
=j (curl J) x Vy dT + Vy4x (d-SXT) ..7k2 y j " dT 4- 1 J

1 .. t interior points

of r
Lim "d Lim
-Li0 I (J.V)Vy J- v '. dS

T-T' S,

- ¢r1)• •dT + v• (d•x) -•z2dj (curl J) x VSIT k y J dT

1..n exterior points

of T

- JV) VyýdT

T
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TABLE 11(CONTD.).

(14)

grad div partial pot J

- -div J Vý'd-r+ fVy J.d-+ y div JdS

f - .
T-T6 S 1..n S T'S6

(cf (urlJ) X VadT + (dSxj)

T-T6 S 6

(15)

curl curl pot J

[(curl S') x V:ý'dT + Vy -~ (d7S x3") (interior and exterior points Of T)

T S 1..nE

d S1 v V-dT+ "n• I.CS+K Jr

1.. interior points

Lim -a- Lm V-Of T
t+ .diV) Vd 2 d 2 JT + y'0y x 3 x

T--T' T St

iv jl- (J Vydr d, + dVJy d-S +- 2jJ~

..n ((exterior points

Of T

(f.i)V 3) dT +ý2 y J• + dT

T T

1.IntroIpit of
f & i

Li 'ryd+ y(iS

],S
T- S
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TABLE II(CONTD.).

(16)

curl curl partial pot J

= (curl J)x V d + Vf x (dSxj) + y(dS curl J)

T-T 6  Sl .. n S 6

(-div J)Vj' dT + fy Vj.dS- + k 2 f Jd
T-T6 SlE..nT 6

+ (j V? .dS - Jx(dSxVj- + 7(dSxcurl J)

S 6

(V)VdT +12 y dT + {:(dS x curl 3) + Výc(JxdS)}

T-T6 T-T6 S6

(17)

(V2 partial pot - {(div dS - dS x curl J) - J dS.Vj- + Jx(dSxVy)}

S
S6

TABLE 12

The Vector Exponential Potential Function j (MxVy) dT and its Derivatives

(1

J (fd - f d (interior and exterior points
(MXVy) dT y •curl M dT - • dSM) of T)

T T S1..n

(2)

partial F(MxV3•) dr - f curl dT - ~ (dS) (evaluated at centre ofi ymoving 6 sphere within T)

T-T6 T-T6 S1 .. n ZS6

(3)

cavity y(xV) dz - j curl dT - '" (dSXM) (defined throughout fixedJy M 6 sphere within T)

T-6 6 S1..n,S 6
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TABLE 12(CONTD.).

(4)

div f (MxVy) dT - 0 (interior and exterior points of T)

T

(5)

div (partial) f (MxV-) di = M. (VyxdS)

T-T6 S6

(6)

curl [ (•xVy dT

T

(curl LM) x V•y d, + jV-y x (dSxM-) (interior and exterior points of T)

T S 1.n En

T T

- V•(-div M) dT +1k2 -R dT + yVM.dS + 4wM

T "T S 1..nE

- -grad M.V'dT + k 2  e x dT + 4wM interior points o f T

IT 
T

SLirm Z " "' .- Lima x × M-y "
- f0 (M.V)V di + '2 k y Md d

T,+O f f S 1 1.

T-T' T S?

1..
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TABLE 12(CONTD.).

(7)

curl (partial) f (MxV-) dT

T-T 6

=](curl M) V'y VdT + VY X (d-SXi) + x(d-Sx--)
T-T6 S E S

y•( yl M)d • dT + Vy R. dS + m d-S. vy

r-T --T6 S E S6

- grad (partial) M.Vy dT + 2 J M dT + { dS.Vy + ix(dsxV•)

T--T6 T-T8 S6

f (i.V)v dT +• k dT + dS x (Mxvy)

T-T6 T'T S 6

(8)

grad div j (MxVf) dT " O (interior and exterior points of T)
T

(9)

grad div (partial) f (Mxýy) dT (curl M) x (dSxVy)
IL• T-T 6 S 6

(10)

curl curlf (mxV•) k-2f (MxVy) dr at exterior points of T

curl curl j Xv) d j (M Vy) dT +4w curl M at interior points Of T
T T
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TABLE 12(CONTD.).

(12)

curl curl (partial) f (MXVy) dT

T-Td

k2 j V) dT + ( {curl H (dy.V)y - div k (dRxV)) +• •(- "S

T-T8 S

(13)

(V2.iij) f (Mcy/ ) dr - at exterior points of T
T

(14)

(V2 ++k2 ) (My) dr = - 4w curl M at interior points of T

T

(15)
(V2+-2) (partial) (MxV- dt

T-T 5

r-x

(div M (dSxi3) + (curl M)x(dSxVZ) - curl M (dS.V ) - k2(dSxM)}

S 6

7.4 The Representation of a Complex Field as the Exponential Potential of4 Surface and Volume Sources

At interior points of 1, (6.1-7) yields

o " er -an- ejý I dS - j '; ej•" (V2+I'2V dr (7.4-1)

S1..nE

It follows that V may be considered to be the exponential potential of a

sim le surface source of density 1 - V and a surface doublet of density

- 4- upon Sl..,together with a volume soutrce of density - L(V2+k2)V

throughout T. The value of k is arbitrary.
_A

Since n is directed out of r, the negative side of the double layer
faces T when the doublet density is positive.

More generally, if V is defined throughout all space and Sommerfeld
conditions hold at infinity (the real part of Jk being negative or zero)
we find from the arguments of Sec. 4.5 that at all points removed from
the surfaces
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4 -, f ;V e V + A ej dS - f e k (V
2

+k
2

)VdT

1..n

(7.4-2)

There are, of course, an infinite number of density functions giving rise
to a prescribed field within a finite region. Thus, if UI..Un are well-

behaved point functions defined throughout the regions TI.T n bounded by

SI.. S n, then within T

L'~ i a /1dS /1 k "2
4• - e)- (V-U) - e"'n dS - r e (V+k)Vdr

a r n Van (r /) J r

Sl..n T

(7.4-3)
tJir ji\> dS - f lr eJr (V2+k2)dT

an r-~ f~ r

T Zl..n

The complex vector field may be treated in exactly the same way via the
vectorial form of (6.1-7).

7.5 Equivalent Layers in Scalar Exponential Potential Theory

Let simple and double layer surface sources of density c and V be spread
over open or closed non-intersecting surfaces S which lie within the
region T' bounded by the closed surface E, and let a volume source of
density ^$ occupy T'. Then at any interior point 0 of T' not coincident
with S, the exponential potential of the system is given by

= eJkro dSJ rdSV ejkr+ J're d (7.5-1)

4 S S To

where the positive sense of doublet orientation corresponds with the

positive sense of dS

It follows from previous considerations that we may also express ýo as

kr= a k ekr (.2+)d

S T'
(7.5-2)

where A represents the increment associated with movement through S in an
arbitrarily-defined positive sense common to both sides of the surface.

But it has been shown that in these circumstances
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a 21 A 4 ; (V2+k2)t - -4wr" (7.5-3)

hence equation (7.5-2) reduces to

p f
a dS + UdS.V eikr)+ ejekr dTr f (r

S S TV

+-L j• af- 1- (1 ej a) dS
4

rj r

whence

f e[ j'r BO' a ( kr I~~ dS =0 (7.5-4)

E

The argument is readily extended to cover the case in which volume
polarisation is present at interior points of T; -P is replaced by

p- div P, Pn appears upon surfaces of discontinuity of P, and the

relationships embodied in (7.5-3) are modified accordingly.

Equation (7.5-4) holds for all configurations of Z which enclose the
source system. As a consequence, we see that the surface integral

"1- e jr a- a0Vk" (1 ejkr)
r an 7n er dS

may be equated to zero whenever V is the exponential potential of a
finite source system, without reference to Sommerfeld conditions or the
nature of the potential exponent, provided only that I is made equal to
it.

Equivalent layer expressions may now be developed in the manner described

in Sec. 4.10 for the non-exponential case. It is easily shown that if
and ' e are respectively the exponential potential of sources within and

without the region R bounded by the closed surfaces S .E, and if
+ *, then

(1) at an interior point 0 of R

jkr a Ik
4-w an 'e 'o ej 'r7 dS (7.5-5)

I..n
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or

1n V eikr/)jdS (7.5-6)

S1

where n is directed out of R and k is the constant in the
exponent of the potential function.

Simple and double equivalent layer densities are,
Ia

correspondingly, and 71L _0 The doublet density has a

positive value when doublet alignment corresponds with n, ie when
the negative side side of the double layer faces R.

It is seen from equation (7.5-6) that the above densities may be

replaced by _L-ý and - L.

(2) at an exterior point 0 of R (ie within T *T.n or outside Z)

4ro e - e dS (7.5-7)

4 r an -01 & an (r

Sl. .nz

or

or an a 1n\r ekr dS (7.5-8)

S1.nE

A
where n is directed into R.

Simple and double equivalent layer densities are now h -and -

the latter having a positive value when the positive side of the double
layer faces R.

iTe d i m b eThese densities may be replaced by 4 an n "

As in the non-exponential case, the equivalent layer densities (defined
by (7.5-6) and (7.5-8)) reverse sign when the exterior problem replaces
the interior.

The equivalence of sources (both scalar and vector) are commonly

considered from the point of view of the E and B fields which derive from
them rather than of the potentials themselves. This subject is treated
of in Sec. 7.8.
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EXERCISES

7-I. It has been tacitly assumed that if J, K, Y are time-harmonic then P, a,
A are also time-harmonic (supposing that their mean values are zero).
Similarly, it has been assumed that if the above density functions,

together with P and R, are time-harmonic, then the potentials are time-
harmonic. Prove these assumptions.

7-2. Confirm the relationship

div [F] - [divpl - cr "

by transforming from real to complex notation and back again.

7-3. By expanding (J.V) in rectangular coordinates show that

. 3J'r r kJ 3jk .rr k2J.rr jkr
+. + - r• - eTr J

Use this result to show that if k - - and J = Re {J ejt}, the real~V ejt
part of (J.V)V'Ye is given by

[ 3T f l

r r ~.2 7j +wL jr4 LT
-([.V) grad ;-(Lt r + r . ca ]-- J

Hence show that the following expressions for curl curl partial pot J

and curl curl partial pot J which appear in Table 11 and in Ex.5-21.,
p. 435 are in agreement:

] (J.V)V k dt ÷2 j dt + •(dS y curl J) + V_ x (Jxd§)}

T- T8 -T a S a

and

i ( 1.v) &rad r 4K.Vr + c r _+ r dT

T-T 6

"1 a2 Q31 dr +[• d x 1I (curl '] + grad ! x ([J]xdS) - rx x dS
t 2 r r cr Lat] I

-T6 S
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Note the considerable simplification introduced into the expressions
(and the working) by the complex notation. (Dyadic notation effects a
further simplification since f ((•.V)V!+ 2 ) dt is replaced by

k2 f F.J dT).

7-4. It was pointed out in Ex.5-13., p. 424, that the computed value of

a L grad f dS, which accompanies movement through the surface, will

S
be in error if S is spherical and it is assumed, for the purpose of
calculation, that a sufficiently small portion of the surface may be
treated as plane.

Show that this assumption does not lead to error in the case of

A grad 4, A div A and A curl A where and A are exponential potentials
(and consequently include retarded and non-retarded potentials) by
deriving values for the general case and demonstrating their agreement
with previously-determined values based upon a planar analysis.

[Hint: Let S be a regular closed surface having a continuous simple
source density W. Show that

4w# 0 f{.ir Q ajr J +A an ýr AjdS

S

where 0 lies within or virhout the enclosure.

Hence show that A f4 - -4w- at all points of the surface. Similarly,

demonstrate that A L- -4iK.

Then substitute these values in equations (2.12-12/14)].

7-5. Confirm that A - -4wo when the local surface comprises a spherical

cap (is the portion of a spherical surface cut off by a plane) by

calculating the limiting values of L# when the centre of the surface is

approached normally from each side. Show that the result is consistent
with equation (4.7-8).

Show further that the normal derivative of grad _# is discontinuous by

81W/R, where R is the radius of curvature of the surface.

Ans:

Ia#

S 1÷ (+ - cos *)s -

an -d- jkR (

where d Is the length of the chord joining the centre of the cap to its
periphery and * is the angle subtended by the chord at the centre ofcurvature.•
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7-6. Show that

S dS

according as the origin of r lies within or without the region enclosed
by S.

Hence deduce that there will be an increase of 47r-jr in the exponential
potential on passing positively through an interior point of an open
surface doublet where the local density is continuous and equal to

Then eploy the procedure of Ex.7-4. to show that the associated value
of& n is zero.

7-7. If the spherical cap of Ex.7-5. now comprises a doublet source of
constant density 'jr, show that as the surface is approached centrally
along the normal from each side

I42 + + ~jkd ( 1

(1jk)
an R IjR )2j ~ 2a/

for a common positive sense of the normal.

Show that for k - 0 and R- these results reduce to equations
(4.7-11/12).

7-8. Consider a uniform, spherical volume source of radius a and density-J.
Show by integration that the exponential potential at exterior points is
identical with that deriving from a point source at the centre, of
strength

Ssin %a - ka Cos ka)

Show further that at interior points, at a distance R from the centre,

"72- , exka (1-jia) R 1.

Hence demonstrate that both * and grad are continuous through the
surface.

Finally, prove that

+ k 2 -

at interior points of the sphere (including the centre).
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7-9. A spherical surface S of radius a is centred upon the point P. A point
function V is defined by

sin oRV - R (R:a)

and

Sej a a ( s n a ) e - J ,R

Se (sin na)eR (Raa)

where R is distance measured from P and a is a real constant.

Show that V may be represented within and without the sphere by

Sae jaa j I -ar
"V 4i'a - e dS

S

where r is distance measured from the point of evaluation.

Now suppose that

- -in~a sin aR
V= sin a R (Rla; sin aa s O)

and

I -JaR (R~a)

Show that V may be represented within and without the sphere by

Sir a si e-Jar dSV t4haa -sin a t o o

S

Deduce that e-a dS w 0 when the origin of r lies outside the

S
sphere and a is such as to make sin as zero, and confirm this by direct
integration.

7-10. A rectilinear source of constant axial density I subtends an angle 2e at
a point 0 on the perpendicular bisector at a distance d. Show by
expansion in a power series that the curl of the exponential vector
potential at 0 is given by

i..
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(curl A), drXC=T+2 --I )r
r

where the positive sense of dr corresponds with the direction of I.

Hence show that

_ -A 7 1si6 2j3
(curl A)O (rxdr) sinin 8+ - -d in <I+ sin + 2k d2 tan 80 1 - -sin 6) 3 -

Now evaluate curl A.dr' around a circle of radius d in the mid plane

(designated F') and show that for right-handed movement relative to I

curl A.dr' + 4wI as d0O

Show further that for any closed contour F" which does not embrace the
source (although possibly coaxial with it)

curl A.dr".O

r',

as the dimensions of the contour shrink to zero.

Hence deduce that the limiting value of the line integral of curl A
around a closed contour which shrinks about an interior point of a line

source with axially directed density I is dependent only upon the local
I:-_

value of I provided that I is continuous in a neighbourhood of the
point.

7-11. Let V be a point function having continuous second derivatives
throughout the infinite re ion T bounded internally by the closed
surfaces S1 o, and let (V2 -k )V be zero outside a sphere of finite

radius. If V satisfies the Sommerfeld conditions when the real part of
Ji is negative or zero, show that V is given everywhere within T by

4irV~ f ej~rr -~ V a (I eji \ ij dS -J e~' ( V~4 dr

s 1 .. n T

[Hint: For the case JZ- 0 make use of the result of Ex.6-2. to show
that - * throughout T, where ý is the exponential ,otential of singlet

and doublet sources upon S of densities L -in and -- and of
1• 4v 41rt

volume sources in T of density - -(V
2;k-2)-V.]
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7-12. 0 and P are interior points of a region T bounded externally by the

closed surface S. A point doublet of moment p is located at P and gives

rise to the exponential potential * n -p.V 7 - where r' is distance

from P. Show by direct integration over a 6 sphere centred on P that
for all finite values of

eJ'r 2Z- - " ek - 0

S

where r is distance measured from 0.

7-13. If, in the previous exercise , a point whirl is substituted for the

doublet, and if A is the vector potential of the whirl, show that

j eikr (I 3A y3 ejk)dS - 0

S

Show further that this relationship continues to hold when A is the

vector potential of piecewise continuous sources of densities I, K and

J, provided that all sources lie within T.

7-14. Derive the following forms of the generalised grad-curl theorem by
expanding

curl curlf yF dT - grad div yF dr - V2 y Fdr

T t

where F is any well-behaved vector field.

"0 - grad y div F dT + grad , 'F.dS

T S l.n En

T St 1.U E T

s f

Vy- div 'F d, T Vy F. CS

T SI..n .

c f 'curlFd+ - (d -F Z2 f Fd

s ee

-f ~d +j' cul dr V' xF) y F dT

TI..nE

- I
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7-15. Let F be a time-harmonic vector field which is well-behaved within the
region T bounded by the surfaces S 1.nZ. Since we may write

- Re{F ejt I it follows from the previous exercise that

0O ReI(f V' divF dT - f 7Y F.dS - Vyx curl F dT

SI. "nyS .. nd/ T

I -jwr/

where -y -e-Jr/c
r

Transform this equation into the retarded form of the grad-curl theorem
as expressed in Ex.5-1., p. 403.

7.6 The Complex Form of Maxwell's Equations

The exponential equivalents of the general expressions for the retarded
scalar and vector potentials deriving from the mixed source configuration
discussed in Sec. 5.19a are given by

"P f dT + a y dS + K -ds + P.VydT + P'.V dS (7.6-1)
- S f - s

and

A + dY d S + I S yds +1 jJe i dT+ j wP'y dS
cl S r ®S

s (7.6-2)

+ Mx Vx' dS
- S

Here, the surface sources, which need not be coincident, are designated
S. K and I are tangential and k is restricted in value Ito so that

-. 1 -Jur/c
y- -e-j

r

The corresponding Hertzian vectors are

a -f + P'-ydS (7.6-3)

-m S
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1- - j M dT + f M'ydS (7.6-4)

S

whence the associated values of * and A are given by

- - div n e (7.6-5)

A curl m +F (7.6-6)

It is seen from (5.17-15), (5.17-18) and (5.17-19) that the complex
equations of continuity take the form

div -J j p (7.6-7)

divsK + A J.n - - jw (7.6-8)

t
ý A

dI+ K.n - - Jw A (7.6-9)

It then follows that for any combination of complete sources

div A - - - $ at exterior points of S (7.6-10)c

This is most easily demonstrated by considering each type of source
separately and making use, if required, of equation (7.3-28) and its line
integral counterpart, viz

T fy d f I ds +f ~.V'd
f s ( 7 ds ' ds+j

in closed or open form.

From equations (5.11-19) and (5.11-20)

E - -grad *- -:A (7.6-11)c

B - curl A (7.6-12)

Then

div E - V2$- L- dv (2A 2 )
c !C

I
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whence, from Sec. 7.2 and Tables 9 and 10,

div E = 4w (y- div P) (7.6-13)

Also

curli - grad divA -V 2 A =__-(-grad•)_v
2

C

whence, from Sec. 7.3 and Tables 11 and 12,

curl B J + - jw P + 4w curl M + - E (7.6-14)c c c

On putting

D = E + 4w P (7.6-15)

"• 1 ad

H - B - 4w M (7.6-16)

and taking the curl of (7.6-11) and divergence of (7.6-12) we arrive at
the complex form of Maxwell's equations, viz

div D = 4w o (7.6-17)

curl B (7.6-18)

div B = 0 (7.6-19)

z' 4w~ + wcurl H - - + -- D (7.6-20)
c c

In the notation of Sec. 5.21 the corresponding boundary conditions are
found to be

n1.DI + n 2 ,D 2  - - 4w (7.6-21)

nj x El + ;2 x E2 = (7.6-22)
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A t- A n'

n1.B1 + n2 .B2  - 0 (7.6-23)

A :_1 A t- 4

n1 x H1 + n2 X H2  - - - K (7.6-24)

7.7 The Macroscopic Vector Fields E, D. B. H

By combining (7.6-10) with (7.6-11) we may express E in terms of A alone.
Thus

-/ c2 c2 + W2
E - :- rad div A+ = url curl A

(7.7-1)

Since (7.6-10) holds only for a complete source system, this limitation
is imposed upon (7.7-1) also.

Substitution in (7.7-1) of the various expressions derived in Sec. 7.3

for curl curl A and 2 + and listed in Tables 11 and 12, lead to

the following formulae for E, D, B and H at points exterior to surfaces
and lines of discontinuity. To simplify the presentation, the different
parent current systems are treated individually.

7.7a Line current (and associated values of A and a)

21 = 1 f r w -2
-j - DO - I.V)v+ ds - -Is Is (7.7-2)

r r

B - H- I x V'ds (7.7-3)4 f
7.7b Surface current (and associated values of 'a and -)

E "D ,, f 1(V)V, +1 dS J- I r.KdS (7.7-4)

S S

=t, I K " V-"dS (7.7-5)B -H K X V -5
c IS

t4

S. -
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7.7c Volume current (and associated values of • and -)

(1) at interior points of T.

E - D V (-ddivbSVdt+fV dT (7.7-6)

Sl1..n r

(curl 3) x Vy-dT + lV.x (dSxJ) - 4J 1  (7.7-7)

$ 1..n E

1 i{om (3.V)Vyjdt - Vy'J. ds + f 3Y dT (7.7-8)" j • - T ' +PO -S ' ÷O ic2
T -T' so T

= Li- +O 1 Lim =-(
_7 r.jdT- I+ Vy J.dS(7-9

C '+ T Iiw s'-0 1
T-T' S

t

(2) at exterior points of T.

J- -- S + y .dS + yJ d, (7.7-10)
E "D " T• - div )Vyd + C

(curl JT) X VydT +f .2 (dSx~j) 1  (7.7-11)

Sj S1..n z

_ (J.V)Vy9 dT+ W'-- f7Jd} (7.7-12)

r f d.Jdt (7.7-13)

T

(3) at interior and exterior points of T.

B H JcurlT d¶ - "(dSxJ) (7.7-14)

S Ic i
T S •1.".n
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I* J •x Vy'dT (7.7-15)

7.7d Surface doublet (not necessarily normal to surface)

E - D .)V= + d - 2 ?.P' dS (7.7-16)
"S 

S

B - H i P x dS (7.7-17)c ý
.S

7.7e Volume doublet

(1) at interior points of r.

E f (-divP)VýdT + V P.dS +-•f _ P dT (7.7-18)

T S 1..nE T

- (curl x Vy dT + V• x (dSxP) - 4wP (7.7-19)

Si..nz

Lim F '.V++LiO1 Vý .dS + 41 F d' (7.7-20)

T -'+ S I r2
T5' S1

-w-2- Lim Lim" C2 T'-*O I .P dr - S V' P.dS

T-T' S,

D - E + 4wP

(2) at exterior points of r.

S"- f C"- - °f "
E = D - j (- dWv V'd¶ + V7P.dS + - P dT (7.7-22)

S ET S 1..nE

- (curl P) 9 Vy dT +? V'x (dSxp) (7.7-23)

T sI..nE
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f (+.V)Vdt P dT (7.7-24)

T T

c2 r.P dT (7.7-25)

T

(3) at interior and exterior points of T.

B . H " - j curl P dT - - (dSxP) (7.7-26)

T St1..nE

. jw P x V dT (7.7-27)
T

7.7f Surface whirl (not necessarily normal to surface)

E - D = x Vy dS (7.7-28)

S

,J ), dS _U /( F.M' dS (7.7-29)B - - L'.( v+2• S- c c

S JS

7.7g Volume whirl

(1) at interior and exterior points of T.

E - D -M - f x Vydr (7.7-30)c f
T

(2) at interior points of T.

B = (curl M) x Vy dT + Vy'x (dSxM) (7.7-31)

T .,"" 1..n E

] (- div M)VydT +fV:'M.dS+2f y MdT +4wM (7.7-32)

T S S1.".nE T
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= -grad ] .Výdr + c 2 3 1 dt + 41rM (7.7-33)

T T

SLim / (R.V)Vy- d + Lim a dS x (MxV~y + c RM dr (7.7-34)Jia (.)yd S'*0 c2

T--T St

W2 Lim FLim -

=C Lra f + S d -+ dS x (MxVy) (7.7-35)

T--T' St

H - B - 41TM

(3) at exterior points of T.

B - H - (curl M) x V dT +f Vx (dSxM) (7.7-36)

T S I. "E

-f (-divM)V dT + fVry M.dS + C2 y M dT (7.7-37)

I S1 . "nI
1..n

- grad .' y M Tv + d 2+]j 3M d (7.7-38)
JT T

d y~ ( V d+ f M dT (7.7-39)= (M.V)Vy dz+c2

T T

- P.M dr (7.7-40)

T

It should be borne in mind that when the formulae of Sec. 7.7a to 7.7c

are applied to incomplete current sources, the E fields, as evaluated,

necessarily include contributions from such point, line or surface

singlets as would develop were there no transgression of the boundaries
by the associated currents.
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EXERCISES

7-16. Prove the relationship (7.6-10) for the most general system of sources.

7-17. Confirm equations (7.6-21) to (7.6-24).

7-18. Show that div D* -41*

curl E* - B*
c

div B* - 0

Z 41r j Jw
curl H* - c * - D*c C

7-19. Show that the flux of B through a closed contour r 1 due to a current of

constant magnitude I in a closed contour r 2 is equal to the flux of B

through r 2  due to I in r 1 . [For this purpose, an arbitrary positive

sense of current in r 1 is defined to produce a positive flux through
r2.]

7-20. Make use of the expansion of (J.V)Vy-in Ex.7-3., p. 632 to show that at

exterior points of a volume distribution of density J

S•I f - - 2 + w 2- ejwric dTE + 2 t+ •r + e2__T

"S. * r and J t)

where J rJ.randJ .J- r

Show that the same value of E obtains at both exterior and interior
points (for the same limiting process) when the singlet distribution is

replaced by a doublet distribution of density - J.

7-21. Show that the exponential potential of a tangentially-orientated, non-

uniform, open surface distribution of doublets of density P' is equal at
exterior points to the potential of a peripheral singlet source of

-' A

density P'.n' together with a singlet surface source of density
#J A A A- divs P.[_n' - is x _n]

7-22. Show that an open non-uniform surface distribution of normally-

orientated whirls of density R' gives rise at exterior points to an
exponential vector potential which is equal to that deriving from a

peripheral line source of density M' s together with a singlet surface

source of density (grads '') - 3.
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7-23. Show that the exponential vector potential of a tangentially-orientated,

non-uniform, plane open surface distribution of whirls of density M' is
duplicated at exterior points by that of a peripheral line source of

density FV x n' together with a surface singlet of density curls H' and

a double layer surface source of density H' x n.

7-24. A time-harmonic point doublet is located at the origin of spherical

coordinates and aligned with the z axis (6 - 0). Show that the E field
at the point R, 0, t is elliptically polarised and that

ER / E6  - R-C~t ( I+ -½ •z + R'

max maxR

7-25. Suppose that J is well-behaved within the region r bounded by S I..n and

is zero outside it. Let the value of -a upon S E be defined by
A l..n _

J.n - JW-G. Then the source system is complete and E is given at
interior points of T by (7.7-9), viz

Sc. Lima -• ILr • d

0= - T a J S'+O
T--T' so

By identifying E with F in equation (6.4-12), arrive at the following

alternative expression for E 0o

E - -1 (Vx?).(dSxE) - 7.(dS x curl E)

S I..nZ

1w uLim L ~ Lim __

-7 fr j .J dT - _ Lira VyJ.dSC-• T'-P -T' S'÷O

It is evident that in the present case the surface integral over S I
is zero. Provide an independent proof of this.

[Hint: Show that when volume integration is carried out over the
regions bounded by SI..n and by Z and a surface at infinity, the

previous equation is replaced by

0 - (Vx•).(dgxE) - ?.(dS - curl E)

SI..n' Z

where the positive normals over S .. nZ are directed into T and that over

the surface at infinity is directed outwards.
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By combining the two equations and evaluating A(nxE) and A(n x curl E),
eliminate the local surface integrals. Then show that the surface
integral at infinity is zero by making use, inter alia, of the expansion
in Ex.7-3.]

7-26. Extend the analysis of the previous exercise to the case in which
surface currents are permitted upon S. Z, provided that

J.n - divs K - JW'. (The surface integrals should be evaluated just
inside T.)

7-27. By working along the lines of Ex.7-25/6 show that B may be expressed at
interior points of T as

B - (Vxr).(dSxB) -. (dS x curl B)

SI .. nZ

+ iLim F.curl J dT c Lim S V'÷ curlO
C T'+O f S'+O J

T--Tr St

Show further that this expression may be transformed into (7.7-14) when
A as A a.

J.n - JW aud into (7.7-14) plus (7.7-5) when J.n - divs K - jwa.

7-28. If J - 0 and M is well-behaved throughout T and zero outside it, show

that B may be expressed at interior points of T as

B 1- f (VxF).(d§xj) - ?.(dS x curl B)Bo " i 4--

Sl..nE

+ Lim f .curl curl 14 d 9- ý 0 V7 curl curl M.dS

T --T S t

Transform this expression into (7.7-31) by a procedure similar to that
adopted in the previous exercises.

7.8 The Diffraction Integrals

We now show that in a finite, source-free region of space E and S may be
expressed as the sum of integrals taken over the bounding surfaces.
Expressions of this type are known as diffraction integrals.

It follows from equations (7.6-17), (7.6-18) and (7.6-20) that in a

source-free region (D - Eo

cE . + E - 0 (7.8-1)
div E - 0; curl curl E - -~ E(V2 +c

2
) 781
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Then on substituting E for the general vector point function F in (6.4-2)n.. 2
or (6.4-3) with 2 -c- we obtain

4irE x +Ž (d7SB)-Vy.'d7S.l (7.8-2)

SI..nE

Similarly

.UC -6 BV+) 0 (7.8-3)div B - 0; curl curl B- 2 B =2 + 2

and

4irB 0 Vyx=(d=SB) - -!y3(dSxE)-V'dS. B (7.8-4)

S ZI..n

It then follows from equations (7.2-15) and (7.3-23) that

4--fE -curl y (dSxE) + J" (dSxB) + grad (dS. (7.8-5)4nEo = - curl.E (7.8-5)

s 1..n S1 .n S I..n

and

4rB = - curl (dSxi) - Jw y (dSx+) + grad (d-S~ ) (7.8-6)

SI..nr E$1..nE S 1..n E

In retarded potential form these equations become

i &- I a 1 P1 A
4 = - curl [nxE] dS- - - (-nxB] dS - grad [-n.E] dS (7.8-7)

Sl..nr Sl..nE Sl..nI

and

4V = curl [-nxi] dS - 1 L [nxE] dS - grad n1 [-n.B] dS (7.8-8)
rC at r r -

S..n S..n 1..n

Equations (7.8-7) and (7.8-8) are known as the Larmor-Tedone formulae.
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We may obtain the following expressions for E and B solely in terms of
i- t-- 0 0

the tangential components of E and B upon Sl .Z, ei-ther by substitution

of B and E for F in equations (6.4-7/8), or by transformation of the
final terms in equations (7.8-5/6).

- ur d +- •r -dxg r -

4irE curl y(sxE) + ° 7 (dS9B2 - ((dSx).V) Vy (7.8-9)

S1..nE S1..nE S 1..nE

4rB - - curl (dSxB) yJ (d-Sx) + ((dSxE).V) V• (7.8-10)

Sl..nE S1..nz S1..nE

whence, from equation (6.4-10),

4ITE 0 (Vxr).(dSxE) + c T.(dSxB) (7.8-11)

S1..nE S1 .. nE

4wrB - (VxF). (dSxB) - V. (dSxE) (7.8-12)

S1..nE S1..nE

From equation (7.3-25) we see that (7.8-9) and (7.8-10) may be replaced
by

4rE - - curl cy (dSxE) + (dSxB) - grad div f (dSxB) (7.8-13)

• .S n I . .nr I..n£

-iB -c- (dSxE) + grad div I (dSxE) (7.8-14)

These expressions, in turn, may be easily transformed into

4wEo0  - curl y (dSxE) - curl r ( (7.8-15)

S..n S..nE

4wBo . - curl y (dxB) + curl curl (d ) (7.8-16)

S1..nE T S 1..nE
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We will have occasion subsequently to make use of variants of
equations (7.8-5/6) which substitute surface divergences for the normal

components of E and B in the final terms.

Let E = • EC + C ECA+ n En, where C and 4 are surface curvilinear

coordinates and C • n form a right-handed set.

Then

n x E E• - E C

whence

diva (nxE) hh (hE) + 2- (hE-) (from (2.12-25))

= - n.curls E (from (2.12-23))

- E

- - n.curl E

or divs (nxE) = --. B.-

Similarly, divs (nx8) - -- n.E (7.8-18)
c

Then from equations (7.8-5) and (7.8-6)

4vE° - - curl y (dSoE) + LW- (dSxB) - T- grad y divs (nxB) dS (7.8-19)
0r - f y wS (7.-19

S1..nE S1..nE Sl..nz

4wB . - curl y (dSxB) - (d~xE) +Tj- grad • divs (nxE) dS (7.8-20)

S .. n£ SE..n£ Sl..nE

When all sources lie within the closed surfaces S .. n the surface

itegrals over E may be deleted in each of the above expressions. This
is a consequence of the fact that the surface integrals over Z vanish at
infinity (See Ex.7-29/30., p. 654). Hence if 0 be exterior to the

regions containing sources, then E and B0 may be expressed in terms of



652 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.7.8

integrals over the surfaces bounding these sources. A particular case is
that in which 0 lies within a source-free region bounded by a single
surface.

We now enquire whether the exterior sources which give rise to E and B at
interior points of T can be replaced by surface sources upon S .. nE.

Suppose that we postulate a macroscopic current source of density
- ^1

K - (nxB) upon the surfaces. From equation (7.6-8) the associated
I Qf

scalar surface density is - , dive K so that the value of E deriving

from the combination is given by

E0 rad L j divs dS - w 1 y K dS

S I..nI S .. nE

whence

41Eo= -- grad ^-dive (nxB) dS + - (dSxB)

Sl..nE SI..nE

Thus we have accounted for two of the three terms in (7.8-19).

Similarly, the associated value of B is given by

B - curl (nxB dS

L S ..nE

whence

4wB - curl (dSxB)

S I..l. .n£

This accounts for the first term of (7.8-20).

It is not possible, with the surface sources at our disposal, to account
for the remaining terms, nor indeed is there any reason to suppose that
it should be possible. Nevertheless, this can be accomplished if we are
prepared to accept the more complex model considered in Ex.5-93., p. 559
(See Ex.7-33., p. 656). However, this is an ad hoc procedure which,
arguably, is of doubtful value in any other context.
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In the practical application of the diffraction formulae we are usually
concerned with evaluation of the integrals over a single surface upon

which, in part at least, the values of E and B or their components are
not accurately known. In attempting to arrive at reasonable values it
must be borne in mind that the field vectors are coupled via the
relationships (7.8-17/18) and cannot be assigned independent values.
Again, it should not be forgotten that the diffraction integrals were

developed on the assumption of continuity of E and B and their
derivatives. The error which may result from a neglect of this fact
becomes evident if the surface S is split into two parts with a common

boundary r, and it is supposed that E and B are zero over one part and
non-zero over the other. On applying equations (7.8-5/6) to this case

we find that the computed values of E and B fail to satisfy Maxwell's

equations whenever the components of E and B parallel to r are
discontinuous through r. (Ex.7-31., p. 655). It is easily seen that
this is the condition for an unbounded surface divergence upon r, and

consequently unbounded normal values of E and B. On the other hand, an
application of (7.8-9/10) or (7.8-11/12) to the case under consideration

yields values of E and B which satisfy Maxwell's equations (See
Ex.7-32., p. 655). These expressions do not involve the normal

components of E and B. It would appear that if a case should arise in

which the tangential values of E and B are bounded while the components

parallel to r are discontinuous through r, the expression for E and B
A e• A e•

involving only n x E and n x B continue to be valid.

Problems associated with discontinuities are common in the applications

of diffraction theory because the surface of integration is often

constrained to coincide in part with discontinuities of the source

system.

The subject is a difficult one end further considerations are beyond the

scope of this work. The interested reader is referred to the extensive

literature on the subject

1. See, for example, the review by C.J. Bouwkamp, "Diffraction Theory" in
"Reports on Progress in Physics", 17, pp. 35-100, The Physical Society,
London (1954).
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EXERCISES

7-29. Deduce the value of the surface integral over Z in equation (7.8-2), as
E recedes to infinity, in the following way.

Let Z be a spherical surface of radius R centred upon a point P located
at finite distance from a system of sources and from a point of

evaluation 0. If AE and AB are the incremental fields deriving from a
source element at Q (supposed complete), in accordance with expressions
developed in Sec. 5.16 or 5.22, show that

f {A•x(dSxAE)-V•dS.AE} J- f R. e-jwr/c d+
c - r2 ---

and

J (dSB) - - -Jwr/c AE dS + ---

c c rR

where r' is distance measured from Q.

Hence show that the total surface integral for a complete source
1

vanishes at infinity as I

Extend the argument to the surface integral over £ in equation (7.8-4).

7-30. Let a system of sources be contained within a region T bounded by the

closed surface E such that the macroscopic densities ýp, J, P and M are
everywhere continuous and fall smoothly to zero before reaching the
bounding surface; and let 0 be an interior point of T. By substitution

of E for F in equation (6.4-2) show that

So = y ox(dlx) + dS.EC

- grad j (p- div P) dT - IT (Jo+ Jw+ c curl M) dr

T T

Hence deduce that the surface integral is zero for all configurations of
the surface provided that it encloses the sources and the point 0, and
observe that 0 is not constrained, as in the previous exercise, to
remain at finite distance from the source system as Z recedes to
infinity.

Now develop a similar treatment for B. and devise a plausible means of
including discontinuous sources of all types in the argument. In this
way show that if all sources are contained within a region bounded by
the closed surface S, the E and B fields at exterior points may be

expressed in terms of n x E and n x B upon S.
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7-31. Let equations (7.8-5/6) be applied to a single surface S which encloses

a source-free region T, and let E and B be well-behaved upon S. Confirm
that at interior points of T

div E - div B - 0

curl E = 3 ; curl -B E
c C

Now suppose that E' and B' are defined by (7.8-5/6) when the integration
is carried out over the portion SA of S having the boundary r. Show
that in these circumstances

div E' = B.dr divB' - -E.d4 Bc i 4 frc

r r

jw~
curl E' = - - grad yE.dr

c•

r

curlB' -E grad yB.dr

r

7-32. Let E " and B " be defined byo 0

4irE" l - curl (dMxE) + - y (dSxB) + grad dS.E grad y B.dr4•o c f grd Wd

SA SA A r

Z, r
4irB" = -curl (dSxB) - J (d + grad dS.B + grad y E.dr

SA SA SA r

Make use of the results of the previous exercise to show that " and B"
satisfy Maxwell's equations.

These expressions are known as Kottler's formulae.

Show that they are identical with the expressions developed previously
in terms of Green's dyadic (7.8-11/12) when applied to an open surface.
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7-33. Show that the diffraction integrals for E and B preserve the same form
when the source system of Ex.5-93., p. 559 is employed. Show further
that the importation of an additional tangential surface source of

c
density K m - (nxE), as permitted by the model, allows E and B to be
expressed , at interior points, wholly in terms of surface sources.

Extend considerations to the time-invariant case, noting that divs K and

divs K are zero, and that E and and A, and 0 and Am are

uncoupled.

7.9 Introduction to the Auxiliary Potentials
2

Let sources be distributed throughout a finite region of space in such a
way that Maxwell's equations hold at all points of a subregion T bounded
by the closed surfaces S I..n.

Since B is solenoidal in T it is possible, in accordance with the results

of Sec. 4.17, to determine a point function Al in T such that

B - curl Al (7.9-1)

A1 is one of an infinite set of possible functions which differ from each
other by a gradient function.

Further, curl E - B so that E + A1 is irrotational in T, hencec Ec

E grad 01 - c1 Al (7.9-2)

where 01 is one of an infinite number of scalar point functions which
differ from each other by a constant.

Equations (7.9-1) and (7.9-2) may be replaced by

B - curl A' (7.9-3)

grad 01' - -- ' (7.9-4)
c

where

A' A A- grad* (7.9-5)

2. While the analysis of the present section is carried out in complex
form, an explicitly retarded treatment may be adopted for the
non-time-harmonic case.
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+ L (7.9-6)
C

Sbeing any well-behaved scalar function.

We will refer to A' and_' as auxiliary potentials.

The replacement of A, and 01 by A' and *' is said to be a gauge

transformation; correspondingly, B and E are said to be gauge-invariant.

From equations (7.9-5) and (7.9-6) we see that

div A'+ 2 div Al+Ž -01 + (7.9-7)
Cc

Hence if * is so chosen as to make

V2 +,U2 + jW
-z div Al c 01

ie if, for example, we put

?_ (d - V_ CA 1vX + d dT

T

then

div A' - c

In this case it follows from (9.7-5), (9.7-6) and Maxwell's equations
that

V2', +2 W•, 2
01+ -- - - 4w (P- div P) (7.9-8)

c

cy A c (J +jw? + c curl M) (7.9-9)

ý1, JW ~-,The relationship div A' - 0 , as mentioned in Sec. 5.19c in real
c

form, is known as the Lorentz gauge. Whereas in the present case it is
the result of choice, it was then a logical deduction based upon the
definitions of retarded scalar and vecto: potentials.

We may choose a different relationship, say

div A' - 0

This is known as the Coulomb gauge and requires that V2 ý - div A• or,
say,



658 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.7.9

1 divA d

T

We easily find that in this case

V2-• - 4ir (-- div P) (7.9-10)

A' - (J + JwP + c curl M) - E (7.9-11)
C C e

On the other hand, if we put C = - *1 then

"At (7.9-12)

c

and

div A' = divA + S 0V2
jW~

Further,

div E - -- divA = 4w (- div P)
c

and

curl B = grad div A' - V2A,

whence

V2 X, + cA -- 4 (J + J + c curl M) + grad div A' (7.9-13)

For the particular case in which p and P are zero in T, equation (7.9-13)
reduces to

Z' 42 4wV2A, + c7 A - - c (J + c curl M) (7.9-14)

Corresponding to the differential equation (7.9-8), the general form of
at an interior point of T is given by (6.1-7) as
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"±. ± 3- L -r.jr• dS + • s (a - div P) dr
o .ir "nr Fn nk r ,r

S ..n

(7.9-15)

where k = - -c

Thus *o, may be expressed in terms of advanced or retarded integrals, or

combinations of the two. Boundary conditions, however, remain unknown.

Suppose that the complete source system comprises a set of •ubregions
within which the density functions are well-behaved. Then 4' may be
expressed at ali points removed from the surfaces by

1~r etjwr/c• "

o±Jwr/c =•"An j cldS + / - ejAr/c(• - div
0 Zw- i 7 an 3nr r

S
(7.9-16)

+ LA e-t1"r/c !' - tjwr/c'x dS

where the A notation is that employed previously, and S represents all
paired surfaces of integration defined by the interfaces of the
juxtaposed regions.

The corresponding solution of equation (7.9-9) is 3

o !jwri'c A a ±Jwr/c dS
0 1 r an in ,r

+etjwric 3'_,• l •a
C r J + JP+ c curl M) dr (7.9-17)

" ±jWr/C -• " jwr/c

-A .. w/ dS

3. Although the subscript * is employed in conjunction with the volume
integrals to indicate that all subregions are included, it is supposed that

. V. J. P and N are eter beyond a finite region of space.



660 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.7.9

In virtue of the boundary conditions expressed by equations (5.21-12)

to (5.21-15), the discontinuities of *' and A' and their derivatives

through bounding surfaces are not entirely arbitrary. Thus if O' and At'

are postulated to be continuous between subregions, the following
relationships must hold (see Ex.7-35., p. 663):

A an - - + (• + 1 .71 + n-2 . 2) (7.9-18)an

A' -41r~ - -A- - , -- (K + c(Mlxn1 ) + c(M2 xn2)) (7.9-19)

Substitution of (7.9-18) snd (7.9-19) in (7.9-16) and (7.9-17), and
transformation in accordance with equation (1) of Tables 10 and 12 then
lead to

- ~ dT + J e ju/ dS +1 P.V (I eiu/c dwr
-o S -

c)] (7,9-20)

+Jwr/c a#' 3 i•n • e-r/ dS

and

cj d e±rJ c w +r/c 1 eJ /c dS
At' " r ;e /d+.. -. d + c -r

(7.9-21)

+f x 1(JI ±jwr/c 3' g, a+ ~ a/C d, + L e tu•-jwr/c dS
J\r 4w an- an Kr S )Jd

More generally,

-a# 1' + (1-a) *2'

where •j' is the advanced (positive exponent) component of (7.9-20), #2'
4is the retarded component, and a is an arbitrary constant

A corresponding expression holds for A'.

4. Note that these two components have identical values so long as the
surface integrals at infinity are retained.

For a possibly independent solution see A.J. Carr, Phil. Meg. 6, p. 241
(1928).
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If, now, a is equated to zero and Soumerfeld conditions stated in the
form

R'bounded ; R + iLo *0+ as R.-
R c(7.9-22)

RA' bounded ; R y- + A*O0 as R-

the advanced components of the potentials are eliminated together with

the retarded surface integrals at infinity, and*' and A' reduce to those
forms of the retarded potentials employed elsewhere in this work (with

5
contributions from surface doublets and whirls omitted)

The foregoing treatment (for the case div A'- -J #'), by means of which

the retarded potentials in externally unbounded regions are developed
from Maxwell's equations, is representative of the approach invariably
adopted (if only implicitly) in conventional works on electromagnetic
theory. Its unsatisfactory nature is at once evident. Not only must
Maxwell's equations be treated as postulates (without prior definition of

I and 1), but the associated boundary conditions likewise6 . A further
postulate must then be adopted concerning the continuity of the potential
functions through surfaces of discontinuity. Finally, the retarded

surface integrals at infinity are arbitrarily equated to zero while the
advanced solutions are conceded to be incompatible with experience and
consequently rejected.

5. The complementary functions, Ie the solutions of the homogeneous
Helmholtz equations, should be added to the particular integrals. However,
Somaerfeld conditions, as stated, eliminate the retarded components. For
the non-time-harmonic case the analysis of Sec. 5.4a reveals that the
complementary functions will be zero everywhere and at all times if they
and their time derivatives are everywhere zero at any one instant.

6. Boundary conditions cannot be derived legitimately from Maxwell's
equations.

7. Some writers endeavour to justify the procedure on the ground that, when
the volume integral is taken to be the complete solution, the computed
value of the corresponding surface integral at infinity is zero. This
argument is invalid, for once the solution is preempted in this way the A
surface integral necessarily vanishes.

-I
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The reverse path, in which the retarded potentials are treated as primary
8 9

concepts, is logical, unequivocal and flexible

This criticism is not, of course, intended to decry the use of auxiliary
potentials when developed for finite closed regions, within which the
constitutive relationships for linear material media may lead to
surprising simplifications; nevertheless, the secondary nature and
limitations of these potentials, and of the correspondingly modified
Maxwellian equations, should not be forgotten. Such applications,
however, properly belong to the applied mathematics of electromagnetic
theory and, as such, are beyond the scope of this work.

EXERCISES

7-34. Supposing that the solutions of (7.9-8), (7.9-9) and of (7.9-10),
(7.9-11) may be expressed entirely as volume integrals and that the

potentials are designated Al', A1' and f2', A2 ' respectively, show that

1 I" J (P"- div P) dT

Al 1 -Jwr/c • •-
A = f r (Q + JwP + c curl M) d¶

or

= • f + •Jw + c curl'ý) dT + grad Tl' dT

and

42'f (p- divP) dT

A2 ' - ! + i JwD + c curl dr

8. In particular, attention is necessarily focussed from the outset upon
the kinematics of retardation. (Needless to say, the conventional view has
been adopted in the present work.)

9. Thus, if doublet surface sources were admitted to the system, the

modification of the boundary conditions for * and A, as derived In an
earlier chapter, could be written down at once. But in the alternative
approach a further postulate would be required.
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or

"A2' f (J + JP + c curl M) dT - TL f r grad #2' dT

Note that both A1 ' and A2 ' may be expressed in unretarded or retarded
(exponential) form, but that only in the retarded form of Al' is the
integrand expressed directly in terms of density functions alone.

7-35. Let a surface of discontinuity be characterised by the curvilinear
A A A

coordinates C and C and let C, C, n form a right-handed set. By
substitution of (7.9-4) in (7.6-21) and (7.6-22) show that

•-f Z2 + LW
- + -+ -nl.(Al-A 2) - 4w (, + nj.Pj + n2.P2)ani Mn2 c

h (ac -c) + z .(Ai-A = 0

1 3Z1,o a 32 oh- -• - / + •--

Hence conclude that (7.6-21) and (7.6-22) are satisfied by the boundary
conditions

I * 2 ; Al A2

a*i 42 A~

+n "'an 4w (ýa + nj.Pj + n2.P2)

Show further that the above conditions also satisfy (7.6-23), and that
(7.6-24) requires that

aSj !. 3A2t%

nj ni.n3 -n2*n2  - - + M2 - (K + c(Mlxn1 ) + c(iM2xnO))

SaA j ^. aA2 j
Finally, show that n. - 2. - 0 because div A - -

whence (7.6-24) is satisfied if

3A! 3A2  4Or +)

-n n _ - c("'+ (xnl) + C(Mkxn))
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7-36. Suppose that (- - div P) is well-behaved everywhere and is zero outside
the externally-bounded region T'. Let the closed surface E, which
bounds the region T, lie everywhere beyond T'. Then if, at any interior
point 0 of T, we take the complete solution of (7.9-8) to be

o f • (e P- div P) dr

it follows from (7.9-15) that

Iii- -3f'(1- jwr/c dS -

Confirm this, when E recedes to infinity, by direct evaluation of that
component of the integral deriving from an arbitrary source element.

7-37. Since the retarded and advanced forms of equation (7.9-15) represent a
single solution of (7.9-8), the retarded volume integral, as set down in
the previous exercise, must satisfy the advanced form of (7.9-15), ie

with k - + -. Demonstrate this for the case in which E recedes tocinfinity.

Show also that the Sommerfeld conditions would have to be modified if a
solution involving a combination of retarded and advanced volume
integrals alone were to be admitted.



APPENDICES

As mentioned in a footnote to Appendix 1 below, the Lorentz force expression
is employed in the following pages. In conformity with our expressed
intention to prescind from the applied mathematics of electromagnetic theory.
we do not seek to stress the physical interpretation of the various analyses;
this will readily be supplied by the reader with a physical background.

The analyses have been included here because of their intrinsic interest and
because - as far as the author is aware - they have not appeared elsewhere.

A.1 The Activity Equation for Point Sources

Consider a set of point sources of strengths a I--ap which move in any

manner (with velocity < c) within the region bounded by a closed surface
S. The sources are surrounded by regular closed surfaces SI---S which

share their velocities and which, in conjunction with S. bound the region
T. Sources of strengths a --- a lie outside S. At some particularq n

instant the interior sources occupy the positions P --- PP and move with

velocities --- vp.

We now proceed to show that if E and i are the l and i fields deriving

from the ith source and Ef' and Bi' are the combined fields of all other
sources, and if

-a! + ± (v'cB')l (A.+-1)

i ]i I

665
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then'

T -- ; + F .-V+ S-+ EB.)d
Pp PJ

4 w T

S
(A. 1-2)

S d + j -, 4 'B - j , __ + .F 'W d T
-t Si n (E I--+E'n IB -+ n n

ST

where T is the limiting; configuration of T as the surfaces SI-
shrink uniformly about their respective sources.

The surface integrand of (A.1-2), which may be expressed as

Z -- ('ixBi') or (i'xi) or s÷

i-I i-I i-l

will be referred to as 'the Poynting vector for point sources'.

On substituting El and Bl' and then El' and 'i for F and G in (1.16-7),
adding the resulting equations, and applying (5.11-24) and (5.U1-27), we
obtain

div (E 1 XBI'+ El'x41) - 1,'.curl 11 - Ej.curl B1 ' + B1 .curl El' - E1 '.curl B1

Z ai1  aI' - ai1 ' aEj"- - • B11"W +E1.'•- + 1.:: + Ei'.•-F-

- - • •j (E1.E1'+ B1.B1')

1. Students of electromagnetics will recognise equation (A.1-1) as the
Lorentz expression for the force exerted on a point charge of strength ai

p

at the point PL by sources giving rise to Ei' and Bi' so that .

i-I

may be interpreted as the activity of the discrete electrical forces of
interaction which appear in the electrical model within the region bounded
by S.
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Then

t-f (E1 .EI 1'+B 1 .B') dT - - c (ElxB1 '+ EI'xB1 ).dS

T S1 . S

when the surfaces S .. p are fixed in position, and

d f (E 1 .E' 1 +B1 .B1 ') dx - - c (f~xB1 '+ E1 'xi1 ).dS

T S 1 ..pS

+ WG1 .21 '+7B-,.'91') v; .d-S

S1
(A. 1-3)

+ (j1.j67Bji' - d-
+ (EI.E 1 '+BI.B') v 2 .dS

S2

when the surfaces Sl..p move with their associated sources.

In the limit2 as S1 shrinks about PI the surface integrals over S1 reduce
to

toc(W )P1.j (ilxdS) - c(E
1 ')P1.f (B 1 xdS)

S1 S I

+ (El')~1 E• •1 d4( 1 ) BI Vl'dS)PI"J El Vl'dS + (BI°)PI" W

Si S1

and this may be replaced by

EI - I .d§) + 'clE,) + 1  .d-S) (A.1-4)

) I xd- + 1B1 P (C, c 1 S1 l S + 1

S1 Sk

2. 'Lim' signs have been omitted in the following pages to simplify the

notation.m
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By making use of the identity

dS x (IXBI) = vI B1 .dS - BI v1 .dS

the first integral of (A.1-4) may be expressed as

f { ;7+1(4xB1 x dS + f i, d§

S1 S1

" [1 + 1 (v14 1) x dS (from Ex.5-44., p. 485)

Si

Now from equation (1.16-6)

V1x BI - V1 x curl A1  = grad(Vl.Al) - (•l.V)AX - (A 1.V-Vl - A1 x curl V1

. grad(vl.A1 ) - (;l.V)Al since v1 is constant
in this context

hence

BE + 1 (v 1XlB) = - grad (01- • ViA - \at + '

and from equation (1.17-2)

I + 1 (IVjx cs- dS (x. +

S1 S1

S1

dil
where d is the rate of change of Al upon the moving surface S1 .

But since the retarded positions of the source appropriate to evaluation
of the field quantities upon S1 converge upon PI as S1 shrinks about PI,
we may take the retarded and instantaneous velocities to be identical in
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the limit, in which case the retarded distance associated with an element

dil
of S1 does not change with time and involves inverse-distance terms

dlj
at most. (In the unaccelerated case - will be zero.) It then follows

on dimensional grounds that the above surface integral, and therefore the
first term of (A.1-4), vanishes in the limit.

The integrand in the second term of (A.1-4) may be replaced by

dS x {i + (CEIXVl) + v E1 .dS

- dS x (- xE} + lEI.dS from (5.11-23)

Bearing in mind that inverse-distance terms in El do not contribute to

the surface integral in the limit and that v, may be identified with the
retarded velocity, we find from equation (5.11-21) that

• -•--•) x El may be replaced by( - •_) x( - •) - c2 )nER---2;

and this is zero.

Hence

f dSxBg + I1 v'l'dS) - I 'dS

SI SI

4rav 1l from Ex.5-42., p. 485

and the sum of the surface integrals over SI in equation (A.1-3) is equal

to -4rajvl.(El')P1.

The surface integrals over S2 in equation (A.1-3) have the limiting value
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-C {BxS+ (jý+7B--)xdK1

S2

+ c (ij)~. {E2'S + (ji3+7E4---x~

S2

+ (~i) P2 j (-i 2 V2 .dS§ + ('E3+74 --- )v2.dS})

S2

+ ( E1 ), . f li (2dSx + (B! -- v2 .dS§)+c(B pj(ExS+ B2 v.)

S2 2

-- 4wra2v2 .(Ei1) P from previous considerations.

It then follows from equation (A.1-3) that

d I (Efj.E1j+WB1 .B1 ') dT C - 1xi f +7EI 'xBj).d5 41rajVj. (f,'Jt - P1
T S

4 ,-4ira
2V2.(-Ei) ------ 4ira v.P,(EI) P

If we proceed as above with 12  2' 2 , 12% replacing 11, lil', B91,B 1
we obtain

d f (F2 .E2 '+7B2 .12 ') dr - - c (I-I 2'+j2 xi2).d

T S

-4wa& 2 v2 .(E2') P2----- ----4wa Pv P E)
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The sum of n equations of this type reduces to

a lV I'(EI ') .... + a . (T') + _ c (EIXBI -- --- E nx n').dS

S

d g 1 - - -dt L (E1.E1  -"+ __ "'+ Bj.Bj B 3 ') dT81J n n
T

whence equation (A.1-2) follows.

It should be noted that

(a) no restriction (other than v < c) has been imposed upon source
motion in the above analysis;

(b) the Poynting vector for point sources vanishes when only a single
source is present;

(c) for n equal clustered sources sharing a common motion the
Poynting vector, at sufficient distance from sources, is given by

(I- E (ixB) where E and B are total fields. Thus for large
ccvalues of n the vector approaches •- (ExB), while for n - 2 it

becomes C (ExB).

A.2 The Linear Momentum Equation for Point Sources 3

We now derive a further relationship for the system of point sources
considered in Sec. A.1, viz

F1 ---- + -f + L (EixiB------ -E x ) dTp dt f 4I c nn
T

" L (CE1 E1 '.dS----+ E E '.dS) - ½ dS (E-.E .-----+ E .E ') (A.2-1)nn nn

S

+ (BI j'.dS----+ B'.dS) - ½ dS (Bj.BI'----+- .B ')}

A combination of equations (1.17-15) and (1.17-17) yields

(7 div U + Z div F - F x curl U - U x curl F) dT = CG Y.dS - ZxGd~xf)

(A. 2-2)

3. The name derives from the interpretation of the volume integrand of
(A.2-1) as the 'density of linear momentum of the field' in electro-
magnetic applications. This interpretation does not concern us here.
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where F and G are any point functions well-behaved within the region of

integration
4

On identifying F with i1 and U with E 1 , and integrating over the region
T as defined in Sec. A.1, we obtain

I (E1 div El'+ El' div 1 1 - E1 x curl El' - El'x cur] fl) dT

T

- (E'1 E1 i.dS - E1 'x(dxE1))
J
S SSI..PS

whence from equations (5.11-26) and (5.11-27)

T at 1 t' dt -d {EI'E.dS - E1 'x(dSx~i)}
T SI1..p S

Similarly, substitution of B1 for F and BI' for C in (A.2-2) yields

- f - "-B B' + ' d• d t{(BI'Bi.dS - Sl'x(dSxij)}

T S I..p S

so that, in the notation of Sec. A.1,

L (E1 141'+ EI'xBi) dT

T

S I..pS

4. F In (A.2-2) has, of course, no connection with FV --- + F in (A.2-1).P



Sec.A.21 THE LINEAR MOMENTUM EQUATION FOR POINT SOURCES 673

and

I d (1141l'+ ij'XBI) d-r

T

- f (iEjE.dS - E1 'x(dSxi) + B1'Bj.dS - 'i'x(dS, I )I (A.2-3)

S'..pS

41xjl'+ i,'x il) 1 -. d-S + (E 1 4 1 '+ 1 1 '41j) ; 2 .dS --

In the limit as S, shrinks about P1 the surface integrals over S, reduce
to

(El')PI f El.ds + (1)Px f 1 xdS + BI vl'dS) + (BI,)P, il.dS

S1 S 1  S1

- (Bi') x f (d~i, + 1 1 Y d1.)

S1

vhich, from the considerations of Sec. A.1, is equal to

- 4ral 1  -' + (1 xB1 ')c ( 141,P1

The surface integral over S2 may be re-arranged as

IX(Eu'xd7) + 1 1 .I-s + ÷lx((Bl'xdS) + BW '- 1.d + 1 (E1 14 1'+ Ej'141)-.s

|s+ S
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In the limit this becomes

(iP2  f + 2v.dS) + (Ei')P f 2 dS +(B 2 fB.d
S2 S2  S2

- fB) (SB + I -i2 V2.CS)

S2

- - 4va2 {i + 1 (v2x11 3p 2

Then from equation (A.2-3)

-I (Ejx-B'.+ .i'xij) di
Z Tt

- f {E1 'E1 .dS - E z'x(dSX) + ij'3 1 .dS - ji'x(dSx'ii)

S

- 4wal f 1' + . (lX3 1 ' 2  
- 4ira2 1E + (v2Bl --

Pwa c v -1  I P2

On carrying through the above analysis with E2 , E2 's 'B2 B2 ' replacing

El', B1 , 1. B11 we find that

(K f 1+ E2
1 xB2 ) dr

- f (1 2 '1 2 .di - 12 (d-SxE 2 ) + 1 2
1 1 2 .d§ - W2 '•(d-Sx 2 )1

S

- 4wa E2 + 1 (vlxi 2)j - 4wa2 (E2' + 2 ( B2'x 2 "-
p1PI - P2
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Summation of n equations of the above type yields

2 d f (• x•j -_j __...xj n ') d T

T

÷ f {(11 '9,.ds---+I 'i .aS ÷ 1 -il'.dS---+ InIn'.dg) - dS( 1j.E 1 '--+• n .n')1

S

+ f{(Bj1jd~--+ Wn nd~ +Wj9j.d7--+ B -n* -S d-S (W I.B'--W-nBW)n

S
8• a--,' + a •~ . .+ -i I + AB

-? Sral (I' + 1 (;ýoxBi)) c P apPI1 p c )• X P P1

whence (A.2-1) follows.

A.3 The Angular Momentum Equation for Point Sources

Corresponding to the linear momentum equation of Sec. A.2 we have the
following angular momentum equation:

rd F, + X F + (E1 xi l-----+ XB )4 dr

T

d • ± ((E1EI'.dS----+ I i .dS) - ½dS( 1 T.EI----+ E .Ef') (A.3-1)
4w an an

S

+ (WlBl'.dS---+ Ban '.d"S) - ½dS(BWj.Bi -----+ IB i. ))

where r is the position vector drawn from an interior or exterior point Q

of T (not coincident with any source) and i = i

A combination of equations (1.17-16) and (1.17-18) yields

'{xF div G + rxG div F - rx(F x curl G) - rx(G x curl F)} dT

(A.3-2)
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where F and C are any point functions well-behaved within the region of
integration.

It will be observed that the individual terms of the integrands are the
vector products of the corresponding terms in (A.2-2) and the position

vector r. This, and the fact that the value of r associated with any
volume element is independent of time, permits of the development of a
proof of (A.3-1) which is entirely analogous to thar of (A.2-1) and
which, in consequence, need not be presented here.
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USEFUL TRANSFORMATIONS

dv - fF.dS

fcurl1FidT d= fdxF

f(curl F).d-S = 5 FATr

J (curl F).dS 0

Jd x gradV - fV d

CdS grad V

fgrad V d v fy45

F x grad V dT V curl F dT + V F xdS

x grad V),dS - V (curl F).d- V Adr

f (f x grad V).dS " f V (curl F).dS

fF.grad V dT V (-div F) dT + v F.ds

fV (grad U).d'S V v V2 U dT + grad V.grad U dT

(V grad U - U grad V).dS f(V V2U _ U V2V) dT

VW grad U.4S - V div(W grad U) dT + W grad V.grad U dr
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f (VW grad U- UW grad V).dS " f (V div(W grad U) - U div(W grad V)) dT

SdrxF = f (dS.V)F-f div F d + f d-S x curl F

'df (S.Vf -idv Fd§+ d-S x --r f -
r (d-rxF) - f r x (dS.V)F - f r x div F dS + r x (dS x curl T) + dS x

O f x (dS.V)F - r x div F dS + r x (dS x curl F) + dS x F

J (F.V)GdT - I (div F) GdT + G F.dS

'f.V)U dT  -fr- di F)UdT +f(-rxU) F.d-S Fx "d d¶

f rX (f r- (-fiJ(i.V)G dr - IF div U dT - FF x curl UdT- Uf xcurl Tdx +f Ux (dS§xF)

f r - (F.V)U dT =f rX T div U dT - f r (f x curl U)dT- f r X (U x curl F)dT
+ r x (Gx(dSxF)) Fx G dr

divs F Js - , ds + (divs n) F.dS

J ! F d

curls F dS - (n'xF) da + divs n (dSxF)JI

f dS x grads V V dr

d§ x sradsV V

f grads V dS - Vn' d +f (divs n) V dS



ADDENDA TO TABLES

Table 2

grad div partial pot

- (curl J) x grad; dT + grad 1 x (dSxj)
T-T S E

+ (dS x curl J) + * - nndS - J grad

S 6

grad div pot J

f (curl grad dr + grad 1 (d-Sj) - 4w7J at interior points

S r
T SlI..nE

curl curl partial pot J

div 7) grad d + grad .dS + div S- dS + grad -.d'§Jr rr(rn/
T-T6 SI..n S6

curl curl pot J

div J) grad- dr+ grad 1 J.dS + 4wrj at interior points

SSI. "nE

679
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Table 3

11
grad (partial) FP.grad 1 dT - -J (P.V)grad - dr + P.grad 1 dS

T-T6 T-T6 S6

- I - Lim + Lim -d
grad *F ad~ dT f (P.V)grad dT s f .gra -grd _.rdr T'÷IO r Sr+

T T-rl so

Table 4

curl (partial) x grad 1r -dT (M.V)grad dT + dS x x grad

r-6r-r6 S6
r r

curl Rxgrad = _ (M.V)grad 1 dr + i ds x x grad

T T-T' St

Table 6

curl curl pot [J]

V)1 + r _~ i + [32'j dT C!L I dT

tjT cr 2  cr. t d2j

+Li ([J].V)grad . d + S'+ ([O._xd ) x
T . r S'+O0' r

T--T' S1
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Boundary conditions for E, B, 5, R 555f. 640f

Boundary conditions for macroscopic potentials 534f

Boundary point 1

Boundary problem 201f

c (retardation constant) 395

Cavity potential 274, 410

Cavity relationships within volume distributions of

doublets 384f

whirls 388f

Characteristic function 584

Circular polarisation 601

Circulation 14

Closed curve 14

region 1

Complex conjugate 575

Complex field identities 105ff

Complex representation of time-harmonic fields 597ff

Complex source density 608

Connected region 40

Convergence of potential 178, 234, 236ff, 409

Coordinates

general curvilinear 109

orthogonal curvilinear 113

cylindrical 114

spherical 116

surface curvilinear 123

Coordinate curve 110

surface 110

Conservative field 40

Continuity, equation of 522f, 639
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Continuity of function If

Continuity of potential 233, 238ff

Contour integral lhf

Coriolis, theorem of 104

Curl of vector field

rectangular coordinates 29

orthogonal curvilinear coordinates 130f
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spherical coordinates 134

surface curvilinear coordinates 161

Currency 25

Current 523

Current density

volume, surface, line 518ff, 523

Curve

regular 11

simple 31

Cut 41

Cyclic 41

S(definition) 554, 640

d'Alembertian (dal) 402

Del 4

Density, macroscopic 524ff

Dipole 218

Dipole moment 219

Dipole potential

time-invariant 219

time-dependent 493ff

Differentiability 7
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Diffraction integrals 648ff

Direction cosine 3

Directional derivative

scalar field 2ff

vector field 6f

Dirichlet problem 201

condition 201

Discontinuity (point and surface) in scalar field 184ff

Discontinuity of potential through scalar surface doublet 236, 612

Discontinuity of normal derivative of potential
through surface singlet 264, 612

Discontinuity of divergence, curl and normal derivative of
through vector surface singlet 313ff, 619

Displacement current 558

Divergence of vector field

rectangular coordinates 51

orthogonal curvilinear coordinates 132

cylindrical coordinates 133

spherical coordinates 134

Divergence theorem 48ff

rectangular coordinates 51

orthogonal curvilinear coordinates 150ff

Double layer 235

Doublet (see dipole)

Dyadic notation 592

E (definition) 481, 545, 553, 639

I field

point sinSlet 481, 483

point doublet 509

point whirl 312
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macroscopic current distributions 561ff, 641f

macroscopic doublet distributions 565ff, 643f

macroscopic whirl distributions 569f, 644

macroscopic vs microscopic

doublet distribution 544ff

whirl distribution 551

Eigenfunction 576

Eigenvalue 576

elliptical polarisation 600

Equation of

continuity 522f, 639

Heaviside-Maxwell 599 (Ex.5-93.)

Helmholtz 575f

Laplace 251

Maxwell 554f, 640

Poisson 280

Equivalent layers

scalar potential theory 289ff

vector potential theory 333ff

exponential scalar potential theory 629ff

Expansion formulae

grad, div, curl of products 66f, 106

grads, divs, curls of products 161f

grad, div, curl of retarded fields 397f

grads, divs, curls of retarded fields 404 (Ex.5-6.)

Exponential poten-ial 607

Exterior point 1
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Field 1

circuical 57

complex 104

conservative 40

inverse - square 382ff

irrotational 40

lamellar 40

multiple - valued I

resolution 342f

scalar 1

in plane region 202ff

single - valued 1

solenoidal 57

two-dimensional 40

vector 2

Field slipping technique 274ff

Flux 48

Free-space Green's function 584

Gamma (y) 586

Gauge, Coulomb 657

Lorentz 537, 639, 657

invariance 657

Gauss's average value (arithmetic mean) theorem 180 (Ex.3-2.)

second average value theorem 256 (Ex.4-26.)

Gauss's integral 179

planar form 205

Gause's law 253ff

extension 281f

S............ .. _
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Grad-curl (Helmholts) theorem 342ff

generalised form 590, 637 (Ex.7-14.)

Gradient of scalar field

rectangular coordinates 3

orthogonal curvilinear coordinates 129f

cylindrical coordinates 133

spherical coordinates 133

surface curvilinear coordinates 160

Green's dyadic 592

Green's formula 177ff

complex form 578, 595

dynamical extension 399ff

planar form 204

Green's function 198ff, 582f, 585ff

in the plane 205

Green's theorem 71f, 169f, 203, 575

in the plane 45 (Ex.1-31.)

vector analogue 195

ii (definition) 554, 640

Half-space 211 (Ex.3-34.)

Harmonic function 171ff

Heaviside - Maxwell equations 559 (Ex.5-93.)

Heluholtz's equation 575f

Helmholtz's formula 578

Helmholtz's theorem 342f

Hertzian dipole 572 (Ex.5-103.)

vectors 536, 638f

Alder condition 264, 281

A
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Idemfactor 592

Image theory 292ff, 333ff

Integral

improper 236f, 347, 360

iterated 19

line 10ff, 118ff

surface 16ff, 120ff

volume 20, 124f

Interior point 1

Invariance with respect to change of axes 81ff

Inverse-square fields 382ff

Irrotational field 40

Jacobian 113

Kelvin's generalisation of Green's theorem 79 (Ex.1-68.)

minimum energy theorem 216 (Ex.3-49.)

Kirchhoff 401

Kottler 655 (Ex.7-32.)

Lamellar 40

Laplace's equation 171, 251

Laplacian operator V2

rectangular coordinates 79f

orthogonal curvilinear coordinates 133, 156

cylindrical coordinates 133, 155

spherical coordinates 134, 156f

Larmor-Tedone formula* 649
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Layer

simple, single, singlet 234

double, doublet 235

Legendre polynomials 222

Level surface 2, 109

Litnard-Wiechert potentials 468ff

space and time derivatives 479ff

Line integral lOff, 118ff

tangential 13

skew 13

Linear momentum equation 671

Linear polarisation 601

Line doublet (potential and derivatives)

scalar 229f, 262f, 411, 611

vector 306, 412, 617

Line singlet (potential and derivatives)

scalar 225ff, 259ff, 410, 417, 611

vector 304f, 312f, 412, 419, 421, 430, 520, 617

Logarithmic potential 217

Lorentz gauge 537, 639, 657

Lorenz 401

MacCullagh's formula 232 (Ex.4-6.)

Macroscopic/microscopic relationships for H and B fields 544ff

Macroscopic i, B, D, H fields

singlet sources 561ff, 641ff

doublet sources 565ff, 643f

vhirl sources 568ff, 644f

in terms of polarisation potentials 570
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Maxwell's equations 554f, 640

integral form 556ff

Mean-value theorem 2

Metrical coefficients 111

Minimal theorems 206ff

Moment of dipole 219

point source complex 224

whirl 305, 381

Monopole 218

Moving systems and time-dependent fields

rate of change at moving point 84ff

rate of change of tangential line integral 86ff

rate of change of normal surface integral 94ff

rate of change referred to coordinate systems in relative motion 101ff

Multiple-valued field 1

Multiply connected 41

Multipole 220f

Nabla 4

Neighbourhood of a point 171

Neumann problem 202

condition 202

Neutral current 519

Newtonian potential 217

Normal surface integral 18

Open region 1

Operator V (nabla, del) 4, 29, 51

V2 79

dal (d'Alembertian) 402
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Orthogonal curvilinear coordinates 113

curl 130f

divergence 132

gradient 130

Laplacian 133, 156

Ostrogradsky's theorem 70

Piecewise continuous 1

smooth 11, 16

differentiable 11, 16

Point doublet (potential and derivatives) 218f, 250f, 609f

oscillating 493ff, 509f

Point function If

Point set 1

Point singlet (potential and derivatives) 217f, 248f, 251, 410, 609

volume distribution 222ff, 253ff

in motion 473ff

Point whirl, time dependent, (potential and derivatives) 497ff, 510ff, 618

Poisson's equation 280

integral 211 (Ex.3-33.)

Polarisation (of source system) 224

Polarisation (of vector field) 600f

Polarisation potentials 535f

Position vector 10

Positive sense

of normal 16, 49, 56

around contour 25
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Potential

auxiliary 656f

alternative definition 389f

cavity 273f, 410

exponential 607

Li~nard-Wiechert 473

approximations 487ff

logarithmic 217

macroscopic 378ff, 524ff

Newtonian 217

partial 273, 410

polarisation 535f

retarded scalar 408ff

vector 412ff

translating volume source 468ff

unretarded scalar 217

vector 304ff

(see also under line, surface volume sources)

Poynting vector for points sources 666

Quadrupole 220

Radiation condition 578

Reciprocal relationships 307ff

Reconcilable paths 40f

Rectilinear scalar doublet 229

singlet 225ff

Reducible curve 40



INDEX 693

Region

bounded 171

closed I

multiply-connected 41

regular 20

simply-connected 40

unbounded 171

Regular curve 11

surface 16

Regularity at infinity 171

Resolution of vector field into curl-free
and divergence-free components 342f

Retardation 408f

Retarded densities 408f, 514f

Retarded fields 395f

Scalar field 1

in plane region 202ff

Shell 235

Simply-connected region 40

Singular line 114

Singular point 186, 241

in the plane 205

Single-valued I

Singlet (see point singlet)

Skew line integral 13

Solenoidal field 57

Solid angle 64 (Ex.1-46.), 179

SoIerfeld conditions 578

Source (see under point, line, surface and volume)
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Space phasor 597

Stokes's theorem 25, 165

Surface area

vector 17, 20, 121ff

scalar 17, 19, 112f

Surface curvilinear coordinates 123

Surface doublet 235

Surface doublet (potential and derivatives)

scalar 235f, 265f, 411, 533, 541 (Ex.5-80/3.), 612f

vector 306f, 412, 620f

Surface gradient, divergence, curl 160ff

Surface integral 16ff

Surface, level 2

Surface singlet (potential and derivatives)

scalar 233f, 263f, 266, 410, 612

vector 306, 313ff, 619

Surface whirl (potential and derivatives) 533, 536, 542f (Ex.5-83/4.), 644,
646/7 (Ex.7-22/3.)

Tangential line integral 13

Theorem

of Coriolis 104

divergence 48ff, 15Off

Gauss's average value 180 (Ex.3-2.)

second average value 256 (Ex.4-26.)

grad-curl 342f

Green's 71f, 169f, 203, 575

Green's, in the plane 45 (Ex.1-31.)

Helmholtz's 342f

Kelvin's minimim energy 216 (Ez.3-49.)
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mean-value 2

minimal 206ff

Ostrogradsky's 70

Stokes's 25, 165

uniqueness (see under uniqueness)

Time-averaged products of time-harmonic quantities 602ff

Time-harmonic field representation by complex quantities 597ff

Transformation formulae

line/surface/volume 67ff, 163ff

Transformation of axes 134ff

Two-dimensional field 40

Units, Gaussian 472, 519

Uniqueness criteria

complex fields 575ff

harmonic fields 173ff

scalar fields 189ff

in plane 203f

time-dependent fields 406f

time-harmonic fields 604ff

vector fields 192f, 197f

Vector field 2

Vector potential

unretardod 304ff

retarded 412ff

exponential 607, 617f

Vector, Poynting 666
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Volume element 113, 124

Volume integration 20, 50, 124

Volume source (potential and derivatives)

density p, [p] or ' 236ff, 273ff, 329f, 408f, 416ff, 426ff, 439ff, 613f

density 1, [5] or J 307, 320ff, 330ff, 412, 418ff, 429f, 441ff, 621ff

macroscopic doublet 347ff, 373ff, 378ff, 448ff, 460ff, 565f, 615f

macroscopic whirl 359ff, 375ff, 380ff, 451ff, 464ff, 568f, 625f

Wave equation 606

Well-behaved 22 (Ex.1-19.)

Whirl, continuous

potential 305

moment 381

Whirl, point, time dependent

potential and derivatives 501ff, 510ff
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